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Preface

Electricity and magnetism were discovered as physical phenomena in the 18-th
and 19-th century. Careful and systematic experimentation led to the identification
of laws ruling the mechanical effects of electromagnetism, which culminated in a
unified theory of mechanics, electricity, and magnetism called electrodynamics.

The course is divided into two parts. The first part represented by chapters 1 to
5 gives an introduction to electromagnetism at the level of an undergraduate course.
From electrical and magnetic phenomena observed in experiments we derive the fun-
damental laws of Coulomb, Gauss, Faraday, Ampère, and Maxwell allowing a com-
plete description of electromagnetism, which culminates in Maxwell’s equations. The
procedure in the second part represented by Chps. 6 to 9 is inverse. From Maxwell’s
equations we deduce electromagnetic phenomena, such as the radiation of accelerated
charges or the role of electromagnetic forces in atoms. Also, we derive fundamental
conservation laws and the relationship of electromagnetism with the theory of special
relativity. This part is a postgraduate course in classical electrodynamics.

The script was developed for the course Electromagnetism A (SFI5708) offered
by the Institute of Physics of São Carlos (IFSC) of the University of São Paulo
(USP). The course is intended for masters and PhD students in physics. The script
is a preliminary version continually being subject to corrections and modifications.
Error notifications and suggestions for improvement are always welcome. The script
incorporates exercises the solutions of which can be obtained from the author.

Information and announcements regarding the course will be published on the
website:
http://www.ifsc.usp.br/ strontium/ − > Teaching − > Semester

The student’s assessment will be based on written tests and a seminar on a special
topic chosen by the student. In the seminar the student will present the chosen topic
in 15 minutes. He will also deliver a 4-page scientific paper in digital form. Possible
topics are:
- Existence of magnetic monopoles and the quantization of charge,
- The Goos-Hänchen and the Imbert-Fedorov shift,
- The Abraham-Minkowski dilemma,
- The Aharonov-Bohm effect,
- Superconductivity and the Meissner effect,
- Cerenkov radiation,
- Bremsstrahlung,
- The Lorentz model of the radiation of an atom (Sec. 7.2.3),
- The Drude model for light-metals interaction (Sec. 7.2.5),
- The Kramers-Kronig relations (Sec. 7.2.6),
- The optical theorem,
- Analytical signal,
- Quantization of the electromagnetic field,
- Optical fibers,
- Diffraction through apertures,
- Laguerre-Gaussian light modes,
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- Bessel beams and laser swords,
- Free-electron laser,
- The ionosphere as a resonant cavity: Schumann resonances,
- Excitation of surface plasmon polaritons,
- The Faraday effect,
- Birefringent crystals and wave plates,
- Forbidden photonic bands and photonic crystals,
- The Ewald-Oseen theorem,
- The Thomas precession,
- Anderson localization,
- Mie scattering and Mie resonances,
- The of coupled dipoles model,
- Gaussian optics,
- Negative refraction and the perfect lens,
- The Kerr effect,
- The quantum Hall effect,
- Anti-reflective and reflective dielectric coatings,
- Hyperbolic metamaterials,
- Comparison between electromagnetic waves and matter waves,
- Bragg Scattering,
- Schlieren photography,
- The Fresnel-Fizeau effect,
- The Sagnac effect.

The following literature is recommended for preparation and further reading:

Ph.W. Courteille, script on Classical Mechanics: Dynamics of Point Masses and
Rigid Bodies, Vibrations and Waves, Gravity (2025)

Ph.W. Courteille, script on Electrodynamics: Electricity, Magnetism, and Radiation
(2025)

Ph.W. Courteille, script on Thermodynamics & Statistical Physics: applied to Gases
and Solids (2025)

Ph.W. Courteille, script on Quantum Mechanics applied to Atoms and Light (2025)

Ph.W. Courteille, script on Optical Spectroscopy: A practical course (2020)

J.B. Marion, Classical Eletromagnetic Radiation, Dover (2012)

W.K.H. Panofsky and M. Phillips, Classical Electricity and Magnetism, Dover (2012)

J.J. Jackson, Classical electrodynamics, John Wiley & Sons (1999)

D.J. Griffiths, Introduction to Electrodynamics, Cambridge University Press (2017)

J.R. Reitz, F.J. Milford, R.W. Christy, Foundation of electromagnetic theory

M. Born, Principles of Optics, 6thed. Pergamon Press New York (1980)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ClassicalMechanicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ClassicalMechanicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumMechanicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumOpticsLab.pdf
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P. Horowitz and W. Hill, The Art of Electronics, Cambridge University Press (2001)

U. Tietze & Ch. Schenk, Halbleiterschaltungstechnik, Springer-Verlag (1978)

Philippe W. Courteille, São Carlos, January 2025
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Chapter 1

Foundations and
mathematical formalism

The electrodynamic force is one of the four fundamental forces, together with gravi-
tation, the strong nuclear force, and the weak nuclear force. It is a long-range force
(F ∝ r−2) in the same way as gravitation, but unlike nuclear forces, which are short-
ranged. Unlike gravitation, it can be attractive or repulsive. The experimentally

Figure 1.1: The four known fundamental forces.

observed fact, that two spatially separated bodies can exert mutual forces (beyond
gravitation), is not explained within classical mechanics. It is necessary to introduce a
new degree of freedom called electric charge which, to take account of the existence of
attractive and repulsive forces, must exist in two different types called positive or neg-
ative charges. Identical charges repel each other, different charges attract each other.
Other observations suggest that the charge is a conserved and quantized quantity.

Electrodynamics is an field theory, that is, it can describe all electric or magnetic
phenomena observed in the following way: Every charge gives rise to a force field,
called field electric ~E , which accelerates other charges. But other experimental ob-
servations suggest the existence of another force field, called the magnetic field ~B,
whose existence is necessary to understand forces only acting on moving charges.
That is, the electric and magnetic fields are introduced to explain the forces named
after Coulomb and Lorentz,

F = q~E + v × ~B . (1.1)

Thus, fields are quantities distributed in space, which in addition can vary in time,

F = F(r, t) . (1.2)

1



2 CHAPTER 1. FOUNDATIONS AND MATHEMATICAL FORMALISM

The concept of a field represents a powerful mathematical tool for describing forces,
which are the only observable magnitudes of electromagnetism. That is, we have
no sense to see the electricity. We can only infer their existence from the observa-
tion of forces. On the other hand, the formulation of electrodynamics via vectorial
force fields, can be replaced by a description via potentials, which are either scalar
or vectorial fields. In many circumstances, potentials facilitate the resolution of elec-
trodynamic problems, but it is important to keep in mind, that potentials are not
directly observable.

Maxwell’s electrodynamics has a very deep relationship to Einstein’s theory of
special relativity, such that each theory is conditioned to the validity of the other.
The relativistic formulation allows to distill the symmetry inherent to electrodynamics
in a highly aesthetic way.

In view of the fundamental role played by scalar and vector fields in electrody-
namics, we will start this course the basic mathematical notions of field theory, that
is, differential and integral calculus with fields in Cartesian or curvilinear coordi-
nates. We will also have to review basic notions of complex numbers and the Dirac
distribution.

1.1 Differential calculus

1.1.1 Scalar and vector fields

The most basic application of vectors is the designation of positions in space, r =
xêx+yêy+zêz. But other physical quantities may also depend on the position where
they are measured. In case the quantity varying with position is a scalar, Φ = Φ(r),
we speak of scalar field. An example for a scalar field is the temperature distribution
across a room. In the case the quantity is a vector, A = A(r), we speak of vector
field. Light propagating through space is an example for a vector field.

A position is generally defined with respect to the center of the coordinate system,
called the origin, such that the distance from the center is given by,

r ≡
√

r · r =
√
x2 + y2 + z2 , (1.3)

with êr being a unit vector pointing in the direction of r. In electrodynamics we
will often deal with quantities (fields) that depend on the distance between a source
located at a position r′ and a detector placed at a position r, such as Φ(R) = Φ(r−r′),

êR =
(x− x′)êx + (y − y′)êy + (z − z′)êz√

(x− x′)2 + (y − y′)2 + (z − z′)2
. (1.4)

1.1.2 The gradient

The derivative of a one-dimensional function Φ(x) measures, how fast the function
changes when we move the position x. That is, when we change x by an amount dx,
Φ changes by an amount dΦ given by,

dΦ =

(
dΦ

dx

)
dx . (1.5)
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Of course it gets trickier, when Φ is a field depending on three coordinates, because
we need to specify in which direction we are changing the position. We have,

dΦ =

(
∂Φ

∂x

)
dx+

(
∂Φ

∂y

)
dy +

(
∂Φ

∂z

)
dz . (1.6)

This equation resembles the scalar product because,

dΦ =

(
êx
∂Φ

∂x
+ êy

∂Φ

∂y
+ êz

∂Φ

∂z

)
· (dxêx + dyêy + dzêz) ≡ ∇Φ · dr , (1.7)

where we defined a new operator called nabla,

∇ ≡



∂/∂x

∂/∂y

∂/∂z


 . (1.8)

The three-dimensional derivative ∇Φ is called the gradient of the scalar field Φ,

∇Φ(r) = êx
∂Φ

∂x
+ êy

∂Φ

∂y
+ êz

∂Φ

∂z
, (1.9)

and it measures the variation of the value of the field from Φ to Φ + dΦ, when we
move the vector by an infinitesimal amount between two points r and r + dr.

We understand the geometric interpretation of the gradient through its formula-
tion as a scalar product:

dΦ = ∇Φ · dr = |∇Φ| · |dr| cos θ , (1.10)

where θ is the angle between the gradient and the infinitesimal displacement. Now,
we fix a magnitude of the displacement |dr| and look for the direction θ in which the
variation dΦ is maximum. Obviously, we find the direction θ = 0, that is, when the
gradient points in the same direction as the predefined displacement.

The gradient of a scalar field Φ(r) calculated at a point r indicates the
direction of the greatest field variation from this point, and its absolute
value is a measure for the variation.

The concept of the gradient is easy to understand in a two-dimensional landscape:
Imagine being on the slope of a mountain. Depending on the direction in which you
are heading and the duration of the journey dr, you will gain or lose a certain amount
of potential energy dΦ, which you can calculate by the scalar product ∇Φ · dr. If the
direction chosen is that indicated by the gradient, you will lose (or gain) a maximum
of potential energy. If you choose to go in a direction perpendicular to the gradient,
that is, along an equipotential line, the potential energy remains unchanged. This is
illustrated in Fig. 1.2.

Let us consider the example of a parabolic field, Φ(r) = −r2:

∇(−r2) =



−2x

−2y

−2z


 = −2r . (1.11)
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Figure 1.2: The gradient indicates the direction of the largest field variation Φ.

We find that at all points of space the variation is faster in radial direction.

Although the operator ∇ has the shape of a vector, it has no meaning by itself. In
fact, it is a vector operator, that is, a mathematical prescription telling us what to do
with the scalar field on which it acts. Nevertheless, it assimilates all the properties of
a vector. (We will see in quantum mechanics, that this is more than a coincidence.)
Thus, in a way similar as done for the gradient of scalar fields, we can try to apply
the ∇ operator on vector fields using the definitions of the scalar and vector products,

grad Φ(r) ≡ ∇Φ(r) and div A(r) ≡ ∇ ·A(r) and rot A(r) ≡ ∇×A(r) .
(1.12)

We practice the calculation with the ∇ operator in the Excs. 1.1.7.1 to 1.1.7.3.

1.1.3 The divergence

Let us now analyze the possible meaning of the expression ∇ ·A called divergence. It
is easy to show,

∇ ·A(r) =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

. (1.13)

Obviously the divergence is a scalar field calculated from a vector field.

The divergence measures how much a vector field A(r) spreads out starting
from a point r. For a given infinitesimal volume it measures the difference
between the number of incoming and outgoing field lines.

Exposed to a field with divergence, an extended distribution of masses will start to
concentrate (spread out) in case of a drain (source). The field lines trace the masses
trajectories.

Example 1 (Divergence of a radial field): We consider the example of the
radial field, A(r) = r:

∇ · r =
∂x

∂x
+
∂y

∂y
+
∂z

∂z
= 3 . (1.14)
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1.1.4 The rotation

Let us now examine the possible meaning of the expression ∇×A called rotation. It
is easy to show,

∇×A(r) =

∣∣∣∣∣∣

êx êy êz
∂x ∂y ∂z
Ax Ay Az

∣∣∣∣∣∣
= êx

(
∂Az
∂y
− ∂Ay

∂z

)
+êy

(
∂Ax
∂z
− ∂Az

∂x

)
+êz

(
∂Ay
∂x
− ∂Ax

∂y

)
.

(1.15)
Obviously the rotation is a vector field calculated from another vector field.

The rotation measures how many of the field lines of a vector field A(r)
passing through an infinitesimal volume, return into it.

Exposed to a field with rotation, an extended distribution of masses will start spinning
in closed orbits.

We consider the examples shown in Fig. 1.3. The properties of divergence and
rotation are complementary. There are fields exhibiting only one of the properties, or
both, or none of them. In cases where there is rotation, it is problematic to specify
equipotential lines: Either, the field lines are not orthogonal to the equipotential lines,
or they come back.

(a) (b) (c) (d) (e)

Figure 1.3: (a) Field without divergence, (b) with constant divergence, (c) with radial
divergence, (d) with rotation, and (e) with rotation.

Example 2 (Rotation of a radial field): We consider the example of a radial
field, A(r) = −yêx + xêy:

∇×A =

 0− ∂zx
∂z(−y)− 0

∂xx− ∂y(−y)

 = 2êz . (1.16)

We practice the calculation with divergence and rotation in the Excs. 1.1.7.4 to

1.1.7.7.

1.1.5 Taylor expansion of scalar and vector fields

We know well the Taylor expansion of functions of one variable:

Φ(x+h) = exp(h d
dx )Φ(x) =

∞∑

ν=0

1
ν! (h

d
dx )νΦ(x) = Φ(x)+hΦ′(x)+ h

2 Φ′′(x)+... . (1.17)
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The generalization of the expansion to a scalar field, which depends on a vector, is,

Φ(r + h) = exp(h · ∇r)Φ(r) =

∞∑

ν=0

1

ν!
(h · ∇r)

νΦ(r) (1.18)

= Φ(r) + (h · ∇r)Φ(r) + 1
2 (h · ∇r)(h · ∇r)Φ(r) + ... .

We see that the operator ∇r generates a translation. We study the Taylor expansion
of scalar fields in Exc. 1.1.7.8.

The generalization of the gradient of a vector field is the Jacobian,

A =



A1

...

An


 =⇒ J [A] =




∂A1

∂x1
· · · ∂A1

∂xn
...

. . .
...

∂An
∂x1

· · · ∂An
∂xn


 . (1.19)

Therefore, the generalization of the expansion to a vector field is,

A(r + h) = exp(h · ∇r)A(r) = A(r) +




(h · ∇r)A1

...

(h · ∇r)An


+ ... (1.20)

= A(r) +



h1

∂F1

∂x1
+ ...+ hn

∂F1

∂xn
...

h1
∂Fn
∂x1

+ ...+ hn
∂Fn
∂xn


+ ... = A(r) + J [A]h + ... .

1.1.6 Rules for calculation with derivatives

In total there are four possible ways of defining products involving scalar and vector
fields, ΦΨ, ΦA, A · B, and A × B, and six product rules to calculate the following
expressions,

∇(ΦΨ) , ∇(A·B) , ∇·(ΦA) , ∇·(A×B) , ∇×(ΦA) , ∇×(A×B) .
(1.21)

Second derivatives can also be defined in six different combinations,

∇ · (∇φ) , ∇× (∇φ) , ∇(∇ ·A) , ∇ · (∇×A) , ∇× (∇×A) . (1.22)

As these rules are used frequently, we summarized them in Secs. 10.6.1 and 10.6.2.
The rules can be derived componentwise from scalar product rules. Very useful

tools for this are the Kronecker symbol and the Levi-Civita tensor. Let us consider
a Cartesian coordinate system i = 1, 2, 3. The coordinates in this system are xi and
the derivatives ∂i ≡ ∂

∂xi
. The Kronecker symbol is defined by,

δmn =

{
1 for m = n

0 else
. (1.23)
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The Levi-Civita tensor is defined by,

εkmn =





1 when (kmn) is an even permutation of (123)

−1 when (kmn) is an odd permutation of (123)

0 when at least two indices are identical

. (1.24)

Adopting Einstein’s summing convention, we automatically take the sum of an ex-
pression over all indexes appearing twice. For example, the scalar product can be
written,

A ·B =
∑

i

AiBi ≡ AiBi . (1.25)

For the vector product we obtain,

(A×B)k ≡ εkmnAmBn . (1.26)

Other examples will be discussed in the Excs. 1.1.7.9 to 1.1.7.11.

1.1.7 Exercises

1.1.7.1 Ex: Differential operators

Find the gradients of the following scalar fields:
a. Φ(r) = x2 + y3 + z4 ,
b. Φ(r) = x2y3z4 ,
c. Φ(r) = ex sin y ln z .

1.1.7.2 Ex: 2D landscape

A 2D landscape is parametrized by h(x, y) = 10(2xy − 3x2 − 4y2 − 18x+ 28y + 12).
a. Where is mountain top?
b. What is its height?

1.1.7.3 Ex: Differential operators

Calculate ∇r′ |r− r′|n.

1.1.7.4 Ex: Differential operators

Calculate the divergence and the rotation of the vector field A = e−x
2yêx + z

1+y2 êy +

xêz at the position (0, 1, 1).

1.1.7.5 Ex: Sources and vertices

a. Determine the divergence and the rotation of the vector field A = Axêx +Ayêy +
Azêz.
b. Calculate for the following fields the sources and vortices:

A1 = −yêx + xêy , A2 = +yêx + xêy ,

A3 = +xêx + yêy , A4 = +xêx + xêy .

c. Make a graphic illustration of the fields and give a geometric interpretation of div
and rot.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CalculoDiferencial01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CalculoDiferencial02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CalculoDiferencial03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CalculoDiferencial04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CalculoDiferencial05.pdf
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1.1.7.6 Ex: Sources and vertices

Calculate the divergence ∇ · r
r3 .

1.1.7.7 Ex: Chain rule for functions of vector field

Apply the chain rule to the gradient of a scalar function of a vector field: ∇φ(E(r)).

Use the rule to calculate ∇
√
ar2.

1.1.7.8 Ex: Taylor expansion in 3D

Consider the function,

f(x) =
1

|d− x| .

Calculate the Taylor expansion in x of this function in Cartesian coordinates at the
position x = 0 (in all three spatial coordinates) up to second-order.

1.1.7.9 Ex: Levi-Civita tensor

Prove the following relationships for the Kronecker symbol and the Levi-Civita tensor
by distinguishing the cases in the indices,
a. εijkδij = 0 ,
b. εijkεijk = 6 ,
d. εijkεimn = δjmδkn − δjnδkm ,
c. εijkεijn = 2δkn .

1.1.7.10 Ex: Levi-Civita tensor

Let the vectors A, B, C, and D ∈ R3 be given. Using the Kronecker Symbol and the
Levi-Civita Tensor
a. show {A×B}i = εijkAjBk;
b. prove the relationship, (A × B) · C = (B × C) · A = (C × A) · B; c. Using the
formulas of (b) derive the following rules of calculation:

i. (A×B)2 = A2B2 − (A ·B)2

ii. (A×B) · (C×D) = (A ·C)(B ·D)− (A ·D)(B ·C) ;

d. prove that:

i. (A×B) · [(B×C)× (C×A)] = [A · (B×C)]
2

ii. A× (B×C) + B× (C×A) + C× (A×B) = 0 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CalculoDiferencial06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CalculoDiferencial07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CalculoDiferencial08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_LeviCivita01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_LeviCivita02.pdf
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1.1.7.11 Ex: Levi-Civita tensor and vector tautologies

Be Ψ and Φ scalar fields and A, B, C, and D vector fields. Show the following
identities with the help of the Kronecker symbol.:
a. A · (B×C) = B · (C×A),
b. (A×B) · (C×D) = (A ·C)(B ·D)− (B ·C)(A ·D),
c. (A×B)× (C×D) = ((A×B) ·D)C− ((A×B) ·C)D,
d. ∇(ΦΨ) = Φ∇Ψ + Ψ∇Φ,
e. ∇× (ΦA) = (∇Φ)×A + Φ∇×A,
f. ∇× (A×B) = (B · ∇)A− (A · ∇)B + A(∇ ·B)−B(∇ ·A),
g. ∇(A ·B) = A× (∇×B) + B× (∇×A) + (A · ∇)B + (B · ∇)A,
h. ∇ · (∇Φ) = ∆Φ,
i. A · (∇Φ) = (A · ∇)Φ,
j. A× (∇Φ) = (A×∇)Φ.
k. ∇ · (A×B) = B · (∇×A)−A · (∇×B),
l. ∇ (ΨA) = A · ∇Ψ + Ψ∇ ·A,
m. ∇ · (Ψ∇Ψ) = Ψ∆Ψ + (∇Ψ)2

n. ∇ · (A×B) = B · (∇×A)−A · (∇×B),
o. ∇ · (∇×A) = 0,
p. ∇× (∇Φ) = 0,
q. ∇× (∇×A) = ∇(∇ ·A)−∇2A.

1.2 Integral calculus

Three types of integrals are often used in electrodynamics, the path integral, the
surface integral, and the volume integral.

1.2.1 Path integral

The path integral is defined on a trajectory C(a,b) through a (scalar or vector) field
linking a start point a to an end point b. While following the path point by point,
incrementing the infinitesimal displacement vector dl (see Fig. 1.4), we evaluate the
local value and the direction of the field, multiply it with dl, and sum it up,

∫

C(a,b)

Φdl ,

∫

C(a,b)

A · dl . (1.27)

Note that in case of a vector field, the integral is taken over the scalar product
between the local field vector and the path element. The work exerted by a force
field, W ≡

∫
F · l is an example. For a path through a field crossing all force lines

under right angle, the path integral zeroes, meaning that no work is accumulated.
Depending on the properties of the field, the integral may only depend on the

points a and b and not on the path C chosen to go from one to the other. In this case,
we say that the vector field is conservative, but this is not always the case. Choosing
a = b we get a closed path, which can be thought of as delimiting a surface in 3D
space. We use the notation, ∮

∂S
A · dl , (1.28)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_LeviCivita03.pdf
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where the symbol ∂S suggests, that the path goes along the edge of the surface S.

Figure 1.4: Integrating along a path in three-dimensional space.

In practice, it is often useful to find a parametrization l(t) for the path with a
parameter (e.g. time) defined over t ∈ [0, 1]. It allows us to calculate explicitly,

∫

C(a,b)

∇Φ · dl =

∫ 1

0

∇Φ(r) · dl(t)
dt

dt . (1.29)

Example 3 (Path integral): As an example, we will calculate the integral
along the path parametrized by l(t) = êx cos t + êy sin t, which is a unit circle
around the origin, inside the field A(r) = −yêx + xêy:∮

A · dl =

∫ 2π

0

(−yêx + xêy) · dl
dt
dt (1.30)

=

∫ 2π

0

(−êx sin t+ êy cos t)

(
êx
d cos t

dt
+ êy

d sin t

dt

)
dt =

∫ 2π

0

(sin2 t+ cos2 t)dt = 2π .

We calculate other examples of path integrals in the Excs. 1.2.7.1 to 1.2.7.4.

1.2.2 Surface integral

The surface integral is defined on a surface S, which can be folded in three-dimensional
space. The surface is parceled into infinitesimal areas dS, the local value and the
direction of the field are evaluated, multiplied with dS, and summed up,

∫

S
ΦdS ,

∫

S
A · dS . (1.31)

The vector of the area dS is the local normal vector. In case of the vector field, the
integral is taken over the scalar product between the field and the local area. The flux,
that is the field lines crossing a surface, Ψ ≡

∫
E · dS it is an example. The normal

vector of the surface of a volume is usually taken as pointing out of the volume. For
example, a surface element of the x-y plane can be written dS = êzdxdy in Cartesian
coordinates. For curved surfaces or in curvilinear coordinates the expression will be
more complicated.

Often we consider closed surfaces, which can be considered as delimiting a volume
in 3D space. We use the notation,

∮

∂V
A · dS , (1.32)

where the symbol ∂V suggests that the surface encloses the volume V.
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Example 4 (Flow of a field): As an example, we calculate the field flux
A = −yêx + x2yêy through the unit cube:∮
cubo

A · dS =

∫ 1

−1

∫ 1

−1

A|z=1êzdxdy +

∫ 1

−1

∫ 1

−1

A|z=−1(−êz)dxdy +

∫ 1

−1

∫ 1

−1

A|x=1êxdydz

+

∫ 1

−1

∫ 1

−1

A|x=−1dydz +

∫ 1

−1

∫ 1

−1

A|y=1êydzdx+

∫ 1

−1

∫ 1

−1

A|y=−1(−êy)dzdx

= 0 + 0 +

∫ 1

−1

∫ 1

−1

(−y)dydz +

∫ 1

−1

∫ 1

−1

ydydz +

∫ 1

−1

∫ 1

−1

x2dzdx+

∫ 1

−1

∫ 1

−1

x2dzdx

=
8

3
. (1.33)

We calculate other examples of surface integrals in Excs. 1.2.7.5 to 1.2.7.8.

1.2.3 Volume integral

The volume integral defined by,
∫

V
ΦdV ,

∫

V
AdV . (1.34)

In the case of a vector field, we simply write: êx
∫
AxdV + êy

∫
AydV + êz

∫
AzdV .

Example 5 (Integral de volume): As an example, we calculate the mass of
a cube with homogeneous density ρ0:

m =

∫ a/2

−a/2

∫ a/2

−a/2

∫ a/2

−a/2
ρ0dxdydz = a3ρ0 . (1.35)

We calculate another example of a volume integral in Exc. 1.2.7.9.

1.2.4 Fundamental theorem for gradients

The fundamental theorem of infinitesimal calculus says,

∫ fb

fa

df =

∫ b

a

F (x)dx = f(b)− f(a) or df = F (x)dx , (1.36)

for F (x) = df
dx . That is, derivation and integration are inverse operations.

Now in vector analysis, as explained above, we know three different types of deriva-
tives. For each one we need to formulate the fundamental theorem in a specific way.
For gradients,

∫

C(a,b)

∇Φ · dl = Φ(b)− Φ(a) or dΦ = ∇Φ · dl . (1.37)

Since the right-hand side does not depend on the path C, the integral of the gradient
can not either. As a consequence,

∮

C
∇Φ · dl = 0 . (1.38)
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The geometric interpretation of the fundamental theorem for gradients is simple:
Climbing a mountain following a path step by step and gaining at each step the
potential energy dΦ = ∇Φdx, we accumulate between the end and the start point
of the path the energy Φ(b) − Φ(a). Path independence is an inherent property of
gradients.

Example 6 (Fundamental theorem for gradients): Let us consider the
following example. To travel inside the potential Φ(r) = xy2 between the points
r1 = (0, 0, 0) and r2 = (2, 1, 0), we can choose between several paths, f.ex. l1(t) =
êx2t+ êyt or l2(t) = êx2t+ êyt

2 with t ∈ [0, 1]. In both cases we gain the same
potential energy Φ(r2)− Φ(r1) = 2:∫
C(r1,r2)

∇Φ · dl1 =

∫ 1

0

(êxy
2 + êy2xy) · (êx2 + êy)dt =

∫ 1

0

(2t2 + 4t2)dt = 2

(1.39)∫
C(r1,r2)

∇Φ · dl2 =

∫ 1

0

(êxy
2 + êy2xy) · (êx2 + êy2t)dt =

∫ 1

0

(2t4 + 8t4)dt = 2 .

An example for the application of the fundamental theorem for gradients is

discussed in Exc. 1.2.7.10.

1.2.5 Stokes’ theorem

Stokes’ theorem allows us to convert a surface integral into a path integral provided
the field to be integrated can be expressed as a rotation,

∫

S
(∇×A) · dS =

∮

∂S
A · dl . (1.40)

To find a geometric interpretation we remember that the rotation measures the
twist of a field A. The integral over the rotation within a given surface (or, more
precisely, the flux of the rotation through this surface) measures the total amount of
vorticity. A rotating region is like a kitchen beater stirring the surface of an incom-
pressible liquid: The more beaters are in the area, the more the liquid will be moved
along the edges of the area. Instead of measuring the number of beaters (left-hand
side of the theorem (1.40)), we can also walk along the edge of the area and measure
the flux along the rim (right-hand side of the theorem (1.40)).

An interesting consequence of Stokes’ theorem is that the path integral is inde-
pendent of the shape of the surface. That is, if the field to be integrated can be
expressed bin terms of a rotation, we can deform the surface (without touching the
edge) without changing the twist of the field,

∮

S
(∇×A) · dS = 0 . (1.41)

This is analogous to the corollary obtained for gradients (1.38).

Example 7 (Teorema de Stokes): Consider the following example. A field
be given by, A = −yêx + xêy, such that ∇×A = 2êz. The surface be a disk of
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radius R enclosed by a circular path parametrized by, l =

R cosωt

R sinωt

0

. Then,

∮
circle

A · dl =

∫ 2π

0

A · l̇dt =

∫ 2π/ω

0

−yx
0

 ·
−Rω sinωt

Rω cosωt

0

 dt = 2πR2

∫
disk

(∇×A) · dS =

∫
disk

0

0

2

 êzdA = 2

∫
disk

dA = 2πR2 .

In the Excs. 1.2.7.11 and 1.2.7.12 we show applications of Stokes’ theorem.

1.2.6 Gauß’ theorem

Gauß theorem allows us to convert a volume integral into a surface integral provided
the field to be integrated can be expressed by a divergence,

∫

V
(∇ ·A) · dV =

∮

∂V
A · dS . (1.42)

To find a geometric interpretation we remember that the divergence measures
the expansion force of the field A. The integral over the divergence within a given
volume measures the total amount of expansion. A divergent region with is like a tap
releasing an incompressible liquid: The more taps are in the volume, the more liquid
will be expelled by the edges of the volume. Instead of measuring the number of taps
(left-hand side of the theorem (1.42)), we can also bypass the volume by measuring
the flux through the surface (right-hand side of the theorem (1.42)).

Figure 1.5: Illustration of the theorems of Gauß (above) and Stokes (below).

Example 8 (Gauß theorem): Consider the following example. A field be
given by, A = r, such that ∇ · A = 3. The volume be a sphere of radius R



14 CHAPTER 1. FOUNDATIONS AND MATHEMATICAL FORMALISM

enclosed by a surface. So:∮
sphericalsurface

A · dS =

∫
sphericalsurface

r · êrdS = rr2

∫ 2π

0

∫ π

0

sin θdθdφ = 4πR3

∫
sphere

(∇ ·A)dV =

∫
sphere

3dV = 3
4π

3
R3 = 4πR3 .

In the Excs. 1.2.7.13 to 1.2.7.16 we show applications of Gauß’ theorem.

The theorems of Stokes and Gauß are often used in the context of cylindrical
or spherical coordinates. Therefore, we will postpone the presentation of further
examples, until we have discussed curvilinear coordinates.

1.2.7 Exercises

1.2.7.1 Ex: Path integral and work

Be the field electric A(r) = E0zêz be given. A charge +q be shifted on a straight line
from the point (0, 0, 0) to the point (1, 1, 1).
a. Write down parametrization for the trajectory.
b. Calculate the work spent on this charge explicitly along the path integral W =
q
∫

E(r) · dr.
c. Calculate the work via the potential φ.

1.2.7.2 Ex: Path integral and work

Consider a field ~E depending on z in the following way ~E = E0zêz. A charge q is
moved on a spiral-shaped trajectory r(t) with radius R,

r(t) =



R cos t

R sin t
h
6π t




between z = 0 until z = h. Make a scheme of r(t). Calculate work made on the

charge explicitly via a path integral W = q
∫
~E · dr. How can we calculate work more

easily?

1.2.7.3 Ex: Path integral and work

Calculate the path integral in the field Φ = x2êx + 2yzêy + y2êz from the origin to
the point (1, 1, 1) on three different paths:
a. For the path (0, 0, 0) −→ (1, 0, 0) −→ (1, 1, 0) −→ (1, 1, 1);
b. for the path (0, 0, 0) −→ (0, 0, 1) −→ (0, 1, 1) −→ (1, 1, 1);
c. and on a straight line.

1.2.7.4 Ex: Curve parametrization

The movement of a mass point is given in Cartesian coordinates by the vector
r(t) = (ρ cosφ(t), ρ sinφ(t), z0) with ρ = vt and φ = ωt + φ0. What is the geo-
metric figure dashed by the movement? Express the speed ṙ(t) and the acceleration
r̈(t) in Cartesian coordinates. Calculate |r(t)|2, |ṙ(t)|2,r(t) · r̈(t) and r(t)× ṙ(t).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_IntegralCaminho01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_IntegralCaminho02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_IntegralCaminho03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_IntegralCaminho04.pdf
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1.2.7.5 Ex: Surface integrals

Given be the vector field A = zyêx + y3 sin2 xêy + xy2ezêz. Calculate the integrals∫
A · dF over the triangle (0, 0, 0) → (0, 3, 0) → (0, 0, 3) → (0, 0, 0), and over the

rectangle (2, 2, 0)→ (2, 4, 0)→ (4, 4, 0)→ (4, 2, 0)→ (2, 2, 0).

1.2.7.6 Ex: Surface integrals

Calculate the integral over a closed surface
a. of the field A = r over the cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 e
b. of the field A = ρ~Eρ over the radial surface of the cylinder 0 ≤ z ≤ 1, 0 ≤ ρ ≤ 1.

1.2.7.7 Ex: Surface integrals

Calculate for the vector field A(r) = cr with c =constant the surface integral

I =

∫

F

A(r)× dS

a. over the surface of a sphere (radius R, center in the origin of coordinates)
b. over the surface of a cylinder (radius R, length L).

1.2.7.8 Ex: Surface integrals

Prove the relationship:

tij ≡
∫

O(a)

dfxixj =
4π

3
a4δij ,

where i, j = 1, 2, 3, x1 = x, x2 = y, x3 = z, and the integral has to be calculated on
the surface of a sphere with radius a.

1.2.7.9 Ex: Volume integrals

Calculate the volume integral of the function Φ = z2 over the tetrahedron with the
corners in (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1).

1.2.7.10 Ex: Fundamental theorem for gradients

What is the energy gain within the potential Φ(r) = Φ0
sin kr
kr along a path keeping a

constant distance from the origin.

1.2.7.11 Ex: Stokes integral theorem

Calculate for following field,

A(r) =



yz

azx

xy




using Stokes’ law the path integral
∮

A · r for an integration along a circle with radius
R around the z-axis at the position z = h.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_IntegralSuperficie01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_IntegralSuperficie02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_IntegralSuperficie03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_IntegralSuperficie04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_IntegralVolume01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_FundamentalGradiente01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_FundamentalStokes01.pdf
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1.2.7.12 Ex: Stokes integral theorem

Calculate the integral
∮
C x(êx + êy) dr, where C be the unit circle in the x-y-plane.

1.2.7.13 Ex: Gauß integral theorem

Calculate the flux of the vector field A(r) = r through a sphere with radius R
a. by the surface integral and
b. with the help of Gauß’s theorem for the volume integral over the divergence.

1.2.7.14 Ex: Gauß integral theorem

Let F be the surface of an arbitrary volume V . Determine for A(x1, x2, x3) =
(ax1, bx2, cx3) the validity of the relationship,

∮

F

dF ·A = (a+ b+ c)V .

1.2.7.15 Ex: Gauß integral theorem

Be a a scalar field and B a vector field. Show,

∫

V

d3r B · ∇a =

∫

O(V )

aB · dF−
∫

V

d3r a∇ ·B .

1.2.7.16 Ex: Gauß integral theorem

Calculate the integral
∮
C x(êx + êy) · dr about a unitary circular path C along the

equator and the integral
∮
F x(êx + êy) · dF, where F be the surface of a unit sphere.

1.3 Curvilinear coordinates

The most commonly used coordinate systems are Cartesian, cylindrical and spherical.
Cylindrical coordinates are expressed in terms of Cartesian coordinates by,



x

y

z


 =



ρ cosφ

ρ sinφ

z


 . (1.43)

And spherical coordinates are expressed in terms of Cartesian coordinates by,



x

y

z


 =



r sin θ cosφ

r sin θ sinφ

r cos θ


 . (1.44)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_FundamentalStokes02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_FundamentalGauss01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_FundamentalGauss02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_FundamentalGauss03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_FundamentalGauss04.pdf
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The task now is to express the differential elements (that is, line, surface and
volume elements), as well as differential operators (that is, the gradient, divergent
and rotation) and the Laplacian in term of curvilinear coordinates.

Let us first consider the general case. The transformation from a Cartesian coor-
dinate system (x, y, z) into a general, curvilinear system (u, v, w) is given by,

r ≡



x(u, v, w)

y(u, v, w)

z(u, v, w)


 . (1.45)

The change dur resulting from a small variation du is then dur = ∂r
∂udu and occurs in

the direction of the new unit vector êu. The unit vectors of the new system, therefore,
can be written as,

êu = U(u, v, w)
∂r

∂u
, êv = V (u, v, w)

∂r

∂v
, êw = W (u, v, w)

∂r

∂w
, (1.46)

where

U =

∣∣∣∣
∂r

∂u

∣∣∣∣
−1

, V =

∣∣∣∣
∂r

∂v

∣∣∣∣
−1

, W =

∣∣∣∣
∂r

∂w

∣∣∣∣
−1

. (1.47)

In the Excs. 1.3.8.1 we study transformations into cylindrical and spherical coordi-
nates.

1.3.1 Differential elements in curvilinear coordinates

In the following we restrict ourselves to orthogonal coordinates, where the unit vectors
are perpendicular. In this case, the total differential dr has the form,

dr =
∂r

∂u
du+

∂r

∂v
dv +

∂r

∂w
dw = êu

du

U
+ êv

dv

V
+ êw

dw

W
, (1.48)

and has the length,

|dr|2 =

(
du

U

)2

+

(
dv

V

)2

+

(
dw

W

)2

. (1.49)

The volume element is,
dτ = dsudsvdsw . (1.50)

1.3.2 Gradient in curvilinear coordinates

We can now express the gradient of a scalar field Φ in orthogonal curvilinear coordi-
nates,

grad Φ = ∇Φ = fuêu + fvêv + fwêw , (1.51)

where the fi are functions which have yet to be determined. To this end we compare
the coefficients of the expressions,

dΦ =
∂Φ

∂u
du+

∂Φ

∂v
dv +

∂Φ

∂w
dw , (1.52)
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and, inserting (1.48) and (1.51),

dΦ = dr · ∇Φ =
fu
U
du+

fv
V
dv +

fw
W
dw . (1.53)

We obtain,

∇Φ =

(
U
∂Φ

∂u

)
êu +

(
V
∂Φ

∂v

)
êv +

(
W
∂Φ

∂w

)
êw . (1.54)

1.3.3 Divergence in curvilinear coordinates

Now we will show how to express the divergence of a vector field A in orthogonal
curvilinear coordinates,

div A = ∇ ·A . (1.55)

The derivation is a bit complicated. We begin by expressing the unit vectors êu,
êv, and êw by the gradients ∇u, ∇v, and ∇w, using the expression for the gradient
(1.54),

∇u = U êu , ∇v = V êv , ∇w = W êw . (1.56)

We now express each unit vector as the vector product of two of these gradients,

∇u×∇v = UV êu × êv = UV êw (1.57)

∇v ×∇w = VW êv × êw = VW êu

∇w ×∇u = WU êw × êu = WU êv .

After that we write A = auêu + avêv + awêw and start considering the first term of
the divergence:

∇ · (auêu) = ∇ ·
( au
VW

∇v ×∇w
)

(1.58)

= (∇v ×∇w) · ∇
( au
VW

)
+

au
VW

∇ · (∇v ×∇w) using ∇ · (αA) = A · (∇α) + α(∇ ·A)

= VW êu ·
[
êuU

∂

∂u

( au
VW

)
+ êvV

∂

∂v

( av
VW

)
+ êwW

∂

∂w

( aw
VW

)]

+
au
VW

[∇w · (∇×∇v)−∇v · (∇×∇w)] using ∇ · (A×B) = B · (∇×A)−A · (∇×B)

= UVW
∂

∂u

( au
VW

)
using ∇× (∇α) = 0 .

Similarly we can show,

∇ · (avêv) = UVW
∂

∂v

( av
UW

)
and ∇ · (awêw) = UVW

∂

∂w

( aw
UV

)
. (1.59)

With this we finally get,

∇ ·A = UVW

[
∂

∂u

( au
VW

)
+

∂

∂v

( av
UW

)
+

∂

∂w

( aw
UV

)]
. (1.60)
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1.3.4 Rotation in curvilinear coordinates

Now we will show how to express the rotation of a vector field A in orthogonal
curvilinear coordinates,

rot A = ∇×A . (1.61)

We write again, A = auêu + avêv + awêw and start considering the first term of the
rotation:

∇× (auêu) = ∇×
(au
U
∇u
)

using (1.56) (1.62)

=
(
∇au
U

)
×∇u+

au
U

(∇×∇u) using ∇× (αA) = (∇α)×A + α(∇×A)

= U
(
∇au
U

)
× êu and ∇× (∇α) = 0 using (1.56)

= U

[
êuU

∂

∂u

(au
U

)
+ êvV

∂

∂v

(au
U

)
+ êwW

∂

∂w

(au
U

)]
× êu

= U

[
êvW

∂

∂w

(au
U

)
− êwV

∂

∂v

(au
U

)]

= UVW

[
êv

1

V

∂

∂w

(au
U

)
− êw

1

W

∂

∂v

(au
U

)]
.

Similarly we can show,

∇× (avêv) = UVW

[
êw

1

W

∂

∂u

(av
V

)
− êu

1

U

∂

∂w

(av
V

)]
(1.63)

∇× (awêw) = UVW

[
êu

1

U

∂

∂v

(aw
W

)
− êv

1

V

∂

∂u

(aw
W

)]
.

With this we finally obtain,

∇×A = êuVW

[
∂

∂v

(aw
W

)
− ∂

∂w

(av
V

)]
+ êvUW

[
∂

∂w

(au
U

)
− ∂

∂u

(aw
w

)]
(1.64)

+ êwUV

[
∂

∂u

(av
V

)
− ∂

∂v

(au
U

)]
,

or, written as a determinant,

∇×A = UVW det




êu
U

êv
V

êw
W

∂
∂u

∂
∂v

∂
∂w

au
U

av
V

aw
W


 . (1.65)

1.3.5 Cylindrical coordinates

Let us now identify the general coordinates u, v, and w with the cylindrical coordinates
ρ, θ, and φ defined in Eq. (1.43). In Exc. 1.3.8.2 we calculate for the line element,

dr = dρêρ + ρdφeφ + dzêz , (1.66)

the distance element,
|dr|2 = (dρ)2 + (ρdφ)2 + (dz)2 , (1.67)
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the surface element given by z = z(ρ, φ),

ds =

(
−∂z
∂ρ

êρ −
1

ρ

∂z

∂φ
êφ + êz

)
ρdρdφ , (1.68)

and the volume element,
dτ = rdzφdr . (1.69)

In the Excs. 1.3.8.3 to 1.3.8.5 we calculate, respectively, the gradient,

∇Φ = êρ
∂Φ

∂ρ
+ êφ

1

ρ

∂Φ

∂φ
+ êz

∂Φ

∂z
, (1.70)

the divergence,

∇ ·A =
1

ρ

∂

∂ρ
[ρ aρ] +

1

ρ

∂

∂φ
[aφ] +

∂

∂z
[az] , (1.71)

the rotation,

∇×A = êρ
1

ρ

[
∂az
∂φ
− ρ∂aφ

∂z

]
+ êφ

[
∂aρ
∂z
− ∂az

∂ρ

]
+ êz

1

ρ

[
∂

∂ρ
(ρaφ)− ∂aρ

∂φ

]
(1.72)

and the Laplace operator,

∆Φ ≡ ∇ · (∇Φ) =
1

ρ

∂

∂ρ

(
ρ
∂Φ

∂ρ

)
+

1

ρ2

∂2Φ

∂φ2
+
∂2Φ

∂z2
. (1.73)

in cylindrical coordinates.

Figure 1.6: Illustration of Cartesian, polar, cylindrical and spherical coordinates.

1.3.6 Spherical coordinates

Let us now identify the general coordinates u, v, and w with the spherical coordinates
r, θ, and φ defined in Eq. (1.44). In Exc. 1.3.8.2 we calculate for the line element,

dr = drêr + rdθeθ + r sin θdφêφ , (1.74)
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the distance element,

|dr|2 = (dr)2 + (rdθ)2 + (r sin θdφ)2 , (1.75)

the surface element given by r = r(θ, φ),

ds =

(
êr −

1

r

∂r

∂θ
êθ −

1

r

1

sin θ

∂r

∂φ
êφ

)
r2 sin θdθdφ , (1.76)

and the volume element,

dτ = dsudsvdsw = r2 sin θdθdφdr . (1.77)

In the Excs. 1.3.8.3 to 1.3.8.5 we calculate, respectively, the gradient,

∇Φ = êr
∂Φ

∂r
+ êθ

1

r

∂Φ

∂θ
+ êφ

1

r sinφ

∂Φ

∂φ
, (1.78)

the divergence,

∇ ·A =
1

r2

∂

∂r
[r2ar] +

1

r sin θ

∂

∂θ
[sin θ aθ] +

1

r sin θ

∂

∂φ
[aφ] , (1.79)

the rotation,

∇×A = êr
1

r sin θ

[
∂

∂θ
(sin θaφ)− ∂

∂φ
(aθ)

]
+ êθ

1

r sin θ

[
∂

∂φ
(ar)− sin θ

∂

∂r
(raφ)

]

+ êφ
1

r

[
∂

∂r
(raθ)−

∂

∂θ
(ar)

]
(1.80)

and the Laplace operator,

∆Φ ≡ ∇ · (∇Φ) =
1

r2

∂

∂r

(
r2 ∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin2 θ

∂2Φ

∂φ2
, (1.81)

in spherical coordinates. We note that the radial part of the Laplace operator can
also be written,

1

r

∂2

∂r2
(rΦ) . (1.82)

1.3.7 Differential operators for tensor fields

Until now, we restricted to scalar and vector fields, that is spatially dependent physical
quantities such as the temperature or the magnetic field distribution in a room. Some
quantities, however, need to be given as matrices or even higher-dimensional objects,
for example, gravity gradients or the susceptibility of a crystal. These objects are
called tensors. With the definition,

êk ⊗ êl = êkê
ᵀ
l (1.83)

we can express a scalar, vector, and second-order tensor as,

Φ , A = Akêk , G = Gklêk ⊗ êl . (1.84)
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For instance, in Cartesian coordinates a second-order tensor reads,

G = Gxxêxê
ᵀ
x +Gxyêxê

ᵀ
y +Gyxêyê

ᵀ
x +Gyyêyê

ᵀ
y =

(
Gxx Gxy
Gxy Gyy

)
. (1.85)

If a tensor T = Φ(r),A(r),G(r) varies in space, we can apply differential operators
to it. The gradient ∇T (r) of a tensor field in the direction of an arbitrary constant
vector x is defined as,

x · ∇T = lim
α→0

d

dα
T (r + αx) . (1.86)

The gradient of a tensor field of order n is a tensor field of order n+ 1. In Cartesian
coordinates, x = xêx + yêy + zêz,

∇Φ = êk
∂

∂xk
Φ ≡ Φ,kêk =

(
∂xΦ

∂yΦ

)
(1.87)

∇A = êk
∂

∂xk
⊗Alêl ≡ A,klêk ⊗ êl =

(
∂xAx ∂yAx
∂xAy ∂yAy

)

∇G = êk
∂

∂xk
⊗Glmêl ⊗ êm ≡ G,klmêk ⊗ êl ⊗ êm =

(
∂x
∂y

)(
Gxx Gxy
Gxy Gyy

)
.

The divergence of a tensor field T (r) is defined using the recursive relation,

(∇ ·A) · x = Tr (∇A) (1.88)

(∇ · G) · x = ∇ · (x · Gᵀ) .

In Cartesian coordinates the divergence is,

∇ ·A = êk
∂

∂xk
·Alêl =

∂Ak
∂xk

≡ Ak,k (1.89)

∇ · G = êk
∂

∂xk
·Glmêl ⊗ êm =

∂Glk
∂xk

⊗ êl ≡ Glk,kêl .

The curl of an order n > 1 tensor field T (r) is also defined using the recursive
relation,

(∇×A) · x = ∇ · (A× c) (1.90)

(∇× G) · x = ∇× (x · Gᵀ) ,

where c is an arbitrary constant vector. In Cartesian coordinates the divergence the
rotation is,

∇×A = εklmêk∂lAm (1.91)

∇× G = εklmêm ⊗ ên∂kGnl .
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1.3.8 Exercises

1.3.8.1 Ex: Spherical and cylindrical coordinates

a. Express the cylindrical coordinates ρ, ϕ, z in terms of the Cartesian ones x, y, z.
b. Express the spherical coordinates r, θ, ϕ in terms of the Cartesian ones x, y, z.

1.3.8.2 Ex: Differential elements in curvilinear coordinates

We have seen in class that the transformation from a Cartesian coordinate sys-
tem (x, y, z) to another curvilinear and orthogonal system (u, v, w) is given by r ≡
(x(u, v, w), y(u, v, w), z(u, v, w)). Now consider the spherical polar coordinates r ≡
(x(r, θ, φ), y(r, θ, φ), z(r, θ, φ) defined in class.
a. Calculate the functions Ur, Vθ,Wφ defined by,

Ur =

∣∣∣∣
∂r

∂r

∣∣∣∣
−1

, Vθ =

∣∣∣∣
∂r

∂θ

∣∣∣∣
−1

, Wφ =

∣∣∣∣
∂r

∂φ

∣∣∣∣
−1

.

b. Determine the Cartesian coordinates of the new unit vectors êr, êθ, êφ, draw the
position of these vectors at a point r0, and check the orthogonality of the unit vectors.
Express the Cartesian unit vectors by the spherical ones.
c. Determine the total differential dr, the line element (ds)2 = |dr|2, and the volume
element dτ = dsudsvdsw in terms of the new coordinates.
d. Repeat steps (a)-(c) for planar polar coordinates.

1.3.8.3 Ex: Spherical and cylindrical coordinates

Calculate ∇Φ, ∇ ·A, ∇×A and ∆Φ = ∇ · (∇Φ)
a. in spherical coordinates (r, θ, φ).
b. in cylindrical coordinates (ρ, φ, z).

1.3.8.4 Ex: Divergence in curvilinear coordinates

Calculate the divergence of the force field F(r) =



x2y

2yz

x+ z


 (a) in Cartesian and (b)

cylindrical coordinates and compare the results.

1.3.8.5 Ex: Differential operators in curvilinear coordinates

In Cartesian coordinates the differential line element has the form dr = êxdx+ êydy+
êzdz and in arbitrary orthogonal coordinates dr = ê1h1dq1 + ê2h2dq2 + ê3h3dq3

with êi = ∂r
∂qi
·
∣∣∣ ∂r∂qi

∣∣∣
−1

and hi =
∣∣∣ ∂r∂qi

∣∣∣. For spherical coordinates (r, φ, θ) we find

hr = 1, hφ = r sin θ, hθ = r; for cylindrical coordinates (ρ, φ, z) we find hρ = 1, hφ =
ρ, hz = 1.
a. The gradient has the general form,

∇iΦ(r) =
1

hi

∂

∂qi
Φ(r) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CoordCurvilineas00.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CoordCurvilineas01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CoordCurvilineas02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CoordCurvilineas03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CoordCurvilineas04.pdf
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Determine the gradient in spherical and cylindrical coordinates.
b. The divergence of a vector field A has the general form,

∇ ·A(r) =
1

h1h2h3

[
∂

∂q1
(A1h2h3) +

∂

∂q2
(A2h1h3) +

∂

∂q3
(A3h1h2)

]
.

Determine ∇ ·A in spherical and cylindrical coordinates.
c. Use the results of (a) and (b) to determine the Laplace operator

∆ = ∇ · ∇

in spherical coordinates.

1.3.8.6 Ex: Acceleration in spherical coordinates

In spherical coordinates the velocity vector has the following form,

v =
dr

dt
= ṙêr + rθ̇êθ + φ̇r sin θêφ .

Calculate the acceleration vector in spherical coordinates. Respect the fact that the
basis vectors must also be derived by time.

1.3.8.7 Ex: Volume element in curvilinear coordinates

a. Calculate the surface of a rectangle with width a and height b in Cartesian coordi-
nates.
b. Calculate the surface of a disk of radius R in polar coordinates.
c. Calculate the volume of a cuboid with dimensions a, b, c in Cartesian coordinates.
d. Calculate the volume of a cylinder with the radius R and height H in cylindrical
coordinates.
e. Calculate the volume a sphere with the radius R in spherical coordinates. See
Fig, 1.6.

1.3.8.8 Ex: Spherical volume

The volume of a body is given by the following formula:

V =

∫

V

1 dV .

a. Calculate the volume of a 3D-sphere in spherical coordinates.
By the Gauß integral law we can establish a relationship between the volume of the
sphere and its surface. (Help: For which vector field A holds: ∇ ·A = 1?)
b. Now calculate the volume of the sphere in this sense. You may assume that the
surface of the sphere is known.
c. Similarly to the above formula, derive a general relationship between the volume
of an n-dimensional hypersphere and its (n − 1)-dimensional hypersurface. Help:
Gauß’s law holds in arbitrary dimensions with the n-dimensional operator nabla-
operator defined by, ∇ = (∂/∂x1, . . . , ∂/∂xn).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CoordCurvilineas05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CoordCurvilineas06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CoordCurvilineas07.pdf
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1.3.8.9 Ex: Spherical volume

The density distribution of a gas be given by n(r) = C2− x2

r20
− y2

r20
− z2

r20
. Determine the

constant C in such a way that the density n(r) is normalized to the number of atoms
in the gas, i.e.,

∫
V n(r)d3r = N , where V is the volume within which the density is

positive, n(r) ≥ 0.

1.3.8.10 Ex: Spherical and cylindrical volume

a. Integrate a circular surface with radius R in Cartesian coordinates and then in
polar coordinates.
b. The density distribution of a trapped atomic gas is described by n(r) = n0e

−r2/r̄2 ,
where n0 = 1013 cm-1 is the maximum density and r̄ = 100µm a measure for the ex-
tent of the distribution. Calculate the number of atoms N =

∫
R3 n(r)d3r, integrating

over Cartesian coordinates and then over polar coordinates.
c. Calculate the density of a homogeneous cylinder of mass 10 kg and length 20 cm by
integrating over its volume..
d. The density distribution of a trapped atomic gas is described by

n(ρ, z) = max
{

0, n0 ·
(

1− ρ2

ρ2m
− z2

z2m

)}
, where n0 = 1013 cm-3 is the maximum den-

sity and zm = 2ρm = 100µm a measure for the extent of the distribution. Calculate
the number of atoms by integrating over cylindrical coordinates.

1.3.8.11 Ex: Cylindrical volume

Consider a material (gas or liquid) whose mass density ρ(r) depends on the z-
coordinate as follows: ρ(r) = ρ0(1 − αz). This material is filled into a cylinder
(radius R and height c) until the total mass in the cylinder is M . The cylinder stands
in a circular area above the xy in z = 0.
a. Calculate the density parameter ρ0.
b. Calculate vector of center of mass rs of the material in the cylinder.
c. Now fill the same material inside a sphere of radius R instead of the cylinder. What
are the results in this case if α = 0.1 /m, R = 1 m, and M = 10 kg.
d. A cake of mass M , height h and radius R be cut into fourth equal pieces. Calculate
the center of mass of a piece. Calculate the center of mass of the rest of the cake
when a piece is taken.

1.3.8.12 Ex: Vector potential in curvilinear coordinates

Be given a constant field B oriented in z-direction. What is the vector potential A in
(a) spherical coordinates, (b) cylindrical coordinates, and (c) Cartesian coordinates?
For case (c) also consider the gauge transformation A′ = A +∇λ with λ = ±Bxy/2.

1.3.8.13 Ex: Gauß’ theorem in curvilinear coordinates

a. Check Gauß’ theorem for function A = r2êr using the volume of a sphere of radius
R.
b. Do the same for the function B = r−2êr and discuss the result.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CoordCurvilineas08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CoordCurvilineas09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CoordCurvilineas10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CoordCurvilineas11.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CoordCurvilineas12.pdf
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1.3.8.14 Ex: Gauß’ theorem in curvilinear coordinates

Calculate the divergence of the function,

A = rêr cos θ + rêθ sin θ + rêϕ sin θ cosϕ .

Verify Gauß’s theorem for this function using the volume of an inverted semisphere
of radius R lying in the x-y-plane.

1.3.8.15 Ex: Gauß’ theorem in curvilinear coordinates

Calculate the gradient and Laplacian of the function T = r(cos θ+sin θ cosϕ). Check
the Laplacian by converting T into Cartesian coordinates. Verify Gauß’s theorem
using the path l1(t) = 2êx cosπt + 2êy sinπt for t ∈ [0, 0.5] followed by l2(t) =
2êy sinπt− 2êz cosπt para t ∈ [0.5, 1].

1.3.8.16 Ex: Gauß’ theorem in curvilinear coordinates

a. Find the divergence of the function,

A = ρêρ(2 + sin2 ϕ) + ρêϕ sinϕ cosϕ+ 3zêz .

b. Verify Gauß’ theorem for this function using a quadrant of cylinder with radius
R = 2 and height h = 5.
c. Find the rotation of A.

1.4 Differential geometry in curved space

In previous sections we mainly concentrated on orthogonal coordinate systems, such
as Cartesian, cylindrical, or spherical. In cases one has to use non-orthogonal systems
the formalism needs to be generalized. For this purpose it is necessary to introduce
some new concepts and notations.

Repeat expressions in index formalism Einstein’s sum rule, anan =
∑n
a an,

ds2 = gmndx
mdxn . (1.92)

1.4.1 Co- and contravariant tensors

A contravariant vector or tangent vector (often abbreviated simply as vector, such as
a direction vector or velocity vector) has components that contra-vary with a change
of basis to compensate. That is, the matrix that transforms the vector components
must be the inverse of the matrix that transforms the basis vectors. Examples of
contravariant vectors include the position of an object relative to an observer, or
any derivative of position with respect to time, including velocity and acceleration.
Contravariant components are denoted with upper indices as in,

v = viei . (1.93)

A covariant vector or cotangent vector has components that co-vary with a change
of basis. That is, the components must be transformed by the same matrix as the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CoordCurvilineas13.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CoordCurvilineas14.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CoordCurvilineas15.pdf
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change of basis matrix. Examples of covariant vectors generally appear when taking
a gradient of a function. Covariant components are denoted with lower indices as in,

w = wie
i . (1.94)

Figure 1.7: (a) Covariant and (b) contravariant basis.

1.4.2 Jacobian for coordinate transformations

The Jacobian of a vector field F is a matrix defined by,

J ≡ ∂(F1, .., Fm)

∂(x1, .., xn)
≡
(
∂Fm
∂xn

)
≡ (Jmn) . (1.95)

We may understand a curvilinear coordinate system {xµ} as a vector field in
Cartesian space {x′ν},

xµ = xµ(x′1, .., x′ν , .., x′m) (1.96)

for µ = 1, ..,m. The Jacobian of this field represents a tool used to transform between
the coordinate systems by taking the rate of change of each component of an old basis
with respect to each component of a new basis and expressing them as coefficients
that make up an old basis. Do the Excs. 1.4.4.2 and 1.4.4.3,

J ij ≡
∂ix

∂x′j
. (1.97)

Example 9 (Jacobian for polar coordinates): For example, the Jacobian
matrix that transforms polar coordinates to Cartesian coordinates in 2 dimen-
sions is given by,

J ij =

(
∂rx ∂θx

∂ry ∂θy

)
=

(
cos θ r sin θ

sin θ r cos θ

)
. (1.98)

The components of Cartesian basis vectors can now be written as a linear com-
bination of these coefficients and their corresponding polar bases,

êx =
∂x

∂r
êr +

∂x

∂θ
êθ = êr cos θ − êθr sin θ (1.99)

êy =
∂y

∂r
êr +

∂y

∂θ
êθ = êr sin θ + êθr cos θ .
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In the case of relating the Jacobian to the metric tensor, the Jacobian can be used
to transform the components of one metric to another via the following method,

g′ij =
∂

∂x′i
∂

∂x′j
=

(
∂xa

∂x′i
∂

∂xa

)(
∂xb

∂x′i
∂

∂xb

)
=
∂xa

∂x′i
∂xb

∂x′i

(
∂

∂xa
∂

∂xb

)
= JaiJ

b
jgab .

(1.100)
Knowing this, taking the determinant of the metric gij requires taking the determinant
of the Jacobian matrices and gab as well,

det g′ij = (det Jai)(det Jbj)(det gab) . (1.101)

Since both Jacobian terms are part of the same matrix and are just written using
different indices to differentiate between the components of the old basis,

(det Jai)(det Jbj) = (detJ)2 . (1.102)

In the case of our old basis being written in Cartesian coordinates,

det gab = det I = 1 . (1.103)

Therefore the equation of our new transformed metric gij , simplifies to,

det gij = (detJ)2 =⇒ det J =
√

det gij . (1.104)

It can be shown that,

d

dt

∂(u, v)

∂(x, y)
≡ ∂( ddtu, v)

∂(x, y)
+
∂(u, ddtv)

∂(x, y)
. (1.105)

The Hessian is a square matrix of second-order partial derivatives of a scalar field.

1.4.3 Metric and geodesic equation in Euclidean space

For an arbitrary curvilinear coordinate system ui we define tangent vectors forming
a basis,

ei =
∂

∂ui
= ∂i , (1.106)

the metric tensor is,
gij ≡ ei · ej . (1.107)

See also Secs. ?? and 9.5.

1.4.3.1 Metric in spherical coordinates

For spherical coordinates,

r =



x

y

z


 =



r sin θ cosφ

r sin θ sinφ

r cos θ


 ,



r

θ

φ


 =




√
x2 + y2 + z2

arccos z√
x2+y2+z2

arctan y
x


 , (1.108)
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the tangent vectors are,

er =
∂r

∂r
= êx sin θ cosφ+ êy sin θ sinφ+ êz cos θ = êr (1.109)

eθ =
∂r

∂θ
= rêx cos θ cosφ+ rêy cos θ sinφ− rêz sin θ = rêθ

eφ =
∂r

∂φ
= −r sin θêx sinφ+ r sin θêy cosφ = r sin θêφ .

Note that, in contrast to the basis vectors êi the tangent vectors ei are not normalized.
The spherical metric is,

gij =
∂xa
∂ui

∂xa

∂uj
=




er · er er · eθ er · eφ
eθ · er eθ · eθ eθ · eφ
eφ · er eφ · eθ eφ · eφ


 =




1 0 0

0 r2 0

0 0 r2 sin2 θ


 ,

with xa = x, y, z, ui = r, θ, φ, and the contra-variant spherical metric being,

gij =
∂ui

∂xa

∂uj

∂xa
=




1 0 0

0 r−2 0

0 0 r−2 sin−2 θ


 . (1.110)

we obtain the contra-variant tangent vectors,

er = grrer = êx sin θ cosφ+ êy sin θ sinφ+ êz cos θ = êr (1.111)

eθ = gθθeθ =
1

r
êx cos θ cosφ+

1

r
êy cos θ sinφ− 1

r
êz sin θ =

1

r
êθ

eφ = gφφeφ = − 1

r sin θ
êx sinφ+

1

r sin θ
êy cosφ =

1

r sin θ
êφ .

The diagonal shape of the metrics are comes from the fact that spherical coordi-
nates are orthogonal. In the example 10 we discuss the metric of an non-orthogonal
coordinate system.

Example 10 (Metric in elliptical coordinates): In contrast to polar, cylin-
drical, or spherical coordinates, elliptical coordinates given by,

r =

(
x

y

)
=

(
ar cosφ

br sinφ

)
,

(
r

φ

)
=

(√
(x
a

)2 + ( y
b
)2

arctan ay
bx

)
, (1.112)

are not orthogonal. The tangent vectors are,

er =
∂r

∂r
= êxa cosφ+ êyb sinφ (1.113)

eφ =
∂r

∂φ
= −êxar sinφ+ êybr cosφ .

Note that, in contrast to the basis vectors êi the tangent vectors ei are not
normalized. The elliptical metric is,

gij =
∂xa
∂ui

∂xa

∂uj
=

(
er · er er · eφ
eφ · er eφ · eφ

)
=

(
a2 cos2 φ+ b2 sin2 φ (b2 − a2)r sinφ cosφ

(b2 − a2)r sinφ cosφ (a2 sin2 φ+ b2 cos2 φ)r2

)
,
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with xa = x, y, ui = r, φ, and the contra-variant elliptical metric being,

gij =
∂ui

∂xa

∂uj

∂xa
=

1

a2b2r2

(
a2r2 sin2 φ+ b2r2 cos2 φ (a2 − b2)r sinφ cosφ

(a2 − b2)r sinφ cosφ a2 cos2 φ+ b2 sin2 φ)

)
.

(1.114)
we obtain the cotangent vectors,

er = griei = grrer + grφeφ = êxa
−1 cosφ+ êyb

−1 sinφ (1.115)

eφ = gφiei = gφrer + gφφeφ = −êxa−1r−1 sinφ+ êyb
−1r−1 cosφ .

The fact that the metric is not diagonal is due to the elliptical coordinates not
being orthogonal. One verifies,

er · eφ = 0 = er · eφ , er · er = 1 = eφ · eφ . (1.116)

Interestingly, while neither the tangent nor the cotangent vectors are orthogonal,

they are mutually orthogonal.

1.4.3.2 Christoffel symbols

The Christoffel symbols are defined by,

Γkij ≡
∂ei
∂xj
· ek . (1.117)

They yields for spherical coordinates with j = r, θ, φ,

Γair =




0 0 0

0 r−1 0

0 0 r−1


 , Γaiθ =




0 −r 0

r−1 0 0

0 0 − tan θ


 (1.118)

Γaiφ =




0 0 −r cos2 θ

0 r−1 sin θ cos θ

r−1 − tan θ 0


 .

Do the Exc. 1.4.4.4.

1.4.3.3 Geodesic equation

In differential geometry the geodesic equation is a curve representing in some sense
the shortest path between two points in a surface, or more generally in a Riemannian
manifold. It is a generalization of the notion of a ’straight line’. The geodesic line is
obtained by solving the differential equation,

d2xk

ds2
+ Γkab

dxa

ds

dxb

ds
= 0 . (1.119)

1.4.4 Exercises

1.4.4.1 Ex: Tensors of rank n

Be given F = E+ ıB and F∗ = E− ıB. Identify (in this order) the scalar F∗ ·F/(8π),
teh vector F∗×F/(8πı), and the dyade (tensor) (F∗ ·F+F ·F∗)/(8π). What happens
to these quantities if we exchange F for e−ıφF, where φ is supposed constant?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_TuebT20.pdf


1.5. DIRAC’S δ-FUNCTION 31

1.4.4.2 Ex: Jacobian for transformation into curvilinear coordinates

a. Calculate the Jacobian of the transformation from cylindrical coordinates (ρ, z, ϕ)
to Cartesian coordinates (x, y, z).
b. Calculate the Jacobian of the transformation from spherical coordinates (r, θ, ϕ)
to Cartesian coordinates (x, y, z).

1.4.4.3 Ex: Jacobian for Galilei and Lorentz transform

Determine the Jacobean of the Galilei transformation,

ct′ = ct and x′ = x and y′ = y and z′ = z − u
c ct ,

and the Lorentz transformation,

ct′ = γ(ct− u
c x) and x′ = x and y′ = y and z′ = γ(z − u

c z) .

1.4.4.4 Ex: Christoffel symbols for two-dimensional polar coordinates

Derive the Christoffel symbols for two-dimensional polar coordinates.

1.4.4.5 Ex: Distorted polar coordinates

a. Study the coordinate system,

r =

(
x

y

)
=

(
f(r) cosφ

g(r) sinφ

)

for arbitrary radial functions f(r) and g(r).
b. Consider the particular cases (i) f = g and (ii) f = ar and g = br.

1.4.4.6 Ex: Metric for ellipsoidal coordinates

Generalize the metric for ellipsoidal coordinates.

1.5 Dirac’s δ-function

Calculating the divergence of the vector field A = r/r3 in spherical coordinates 1,

∇ ·A =
1

r2

∂

∂r

(
r2 1

r2

)
= 0 , (1.120)

we expect, ∫

sphere

∇ ·AdV = 0 . (1.121)

1Or in Cartesian coordinates: ∇ ·A = ∂
∂r3

x
r3

+ ∂
∂r3

y
r3

+ ∂
∂r3

z
r3

= 3r3−3x2r
r6

+ ... = 0.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_Jacobian11.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_Jacobian12.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_Jacobian13.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_Jacobian14.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_Jacobian15.pdf
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This is surprising, because intuition tells us to expect a huge divergence near the
origin. The problem is that the field A diverges at the origin, which calls for a
modification of the expression for the gradient. Gauß’ law gives us an indication
since, according to this law, the result (1.121) should be equal to the surface integral,

∮

∂ sphere

A · dS =

∫ 2π

0

∫ π

0

êr
R2
· (R2 sin θdθdφêr) = 4π . (1.122)

As the integral (1.121) contains a divergence within the volume of integration, we
conclude that the integral (1.122), which has no divergence within the integration
surface is more reliable. Therefore, we look for a function δ satisfying,

∫

sphere

∇ ·A(r)dV =

∫

sphere

4πδ(r)dV = 4π , (1.123)

that is, a function having the property of killing integrals.

1.5.1 The Dirac function in 1 dimension

In one dimension the Dirac function is defined by,

δ(x) ≡
{

0 for x 6= 0

∞ for x = 0
, (1.124)

such that, ∫ ∞

−∞
δ(x)dx = 1 . (1.125)

The Dirac function can be expressed as the limit of a series of continuous functions,

δ(x) = lim
n→∞

n

π

1

1 + n2x2
(1.126)

δ(x) = lim
n→∞

n

π

(
sinnx

nx

)2

δ(x) = lim
n→∞

1

π

sinnx

x
= lim
n→∞

1

2π

∫ +n

−n
eıkxdk .

We also note that the Dirac function is even, δ(−x) = δ(x), non-linear, δ(ax) =
δ(x)/|a|, and can be interpreted as the derivative of the Heavyside function,

∫ x

−∞
δ(x′)dx′ = Θ(x) or

dΘ

dx
= δ(x) . (1.127)

We will train the calculus with the Dirac function in Excs. 1.5.4.1 to 1.5.4.3.

When the argument of a Dirac function is itself a function f(x), the Dirac is
evaluated at each zero-passage of f ,

∫ b

a

dx g(x)δ(f(x)) =

∫ b

a

dx g(x)
∑

i

δ(x− xi)
|f ′(xi)|

, (1.128)

where f ′(xi) 6= 0. We will apply this theorem in Exc. 1.5.4.4.
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Figure 1.8: (code) Illustration of the function 1
π

sinnx
x

(left) and of the function 1
π

n
1+n2x2

(right) for various n→∞.

1.5.2 The Dirac function in 2 and 3 dimensions

In more dimensions the δ-function is often used to parametrize points, paths, or
surfaces within a volume. For example, a point charge Q at the position a can be
described by the three-dimensional density distribution,

ρ(r) = Qδ3(r− a) = Qδ(x− ax)δ(y − ay)δ(z − az) , (1.129)

a current I in a circular loop with radius R within the z = 0 plane generates a current
density,

j = Iδ(r −R)δ(z)êφ , (1.130)

called a current yarn. Similarly, a two-dimensional arrangement of charges σ homo-
geneously distributed over the surface of a sphere with radius R can be described by
the three-dimensional density distribution,

ρ(r) = σδ(r −R) . (1.131)

Such parametrizations are useful, because they can be applied in fundamental laws
of electromagnetism (see Exc. 1.5.4.5).

Example 11 (Parametrization of a current distribution): As an exam-
ple we calculate the current I produced by the distribution (1.130) crossing a
rectangular area around the point r = Rêx,∫

area

j · dA = I

∫ R+∆x

R−∆x

∫ ∆z

−∆z

δ(r −R)δ(z)êydA = I

∫ r+∆x

r−∆x

δ(x−R)dx = I .

Example 12 (Parametrization of a charge distribution): In another ex-
ample we calculate the total charge Q produced by the distribution (1.131),∫

volume

ρ(r)dV = σ

∫ 2π

0

∫ π

0

∫ ∞
0

δ(r −R)r2 sin θdθdφdr = σ4πR2 = Q .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Fundaments_DiracDelta.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Fundaments_DiracDelta.m
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Example 13 (Dirac function in Coulomb’s Law): In a third example we
show that the field of a point charge, %(r) = Qδ(x)δ(y)δ(z), can be obtained
from Coulomb’s law,

~E =

∫
%(r′)

4πε0

r− r′

|r− r′|3 dV
′ =

Q

4πε0

r

r3
.

1.5.3 Analytical signals

In signal processing theory, an analytic signal is a complex-valued function without
negative frequency components. The real and imaginary parts of an analytic signal are
mutually related by a Hilbert transform. Conversely, the analytic representation of a
real-valued function is an analytic signal, which comprises the original function and its
Hilbert transform. This representation facilitates many mathematical manipulations.
The basic idea is that the negative frequency components of the Fourier transform
(or spectrum) of a real function are superfluous due to the Hermitian symmetry of
such a spectrum. These negative-frequency components can be discarded without
loss of information, as long as we are willing to deal with a complex function. This
makes certain attributes of the function more accessible, particularly for application
in radiofrequency manipulation techniques.

While the manipulated function has no negative frequency components (that is,
it is still analytic), the inverse conversion from complex to real is just a matter of
discarding the imaginary part. The analytical representation is a generalization of the
phasor concept: while the phasor is restricted to time-invariant amplitudes, phases
and frequencies, the analytic signal allows for temporally variable parameters.

1.5.3.1 Transfer function generating an analytical signal

We consider a real function s(t) with its Fourier transform S(f). Then the transformed
function exhibits a Hermitian symmetry about the point f = 0, since,

S(−f) = S(f)∗ , (1.132)

The function,

Sa(f) ≡





2S(f) for f > 0

S(f) for f = 0

0 for f < 0

= S(f) + sgn(f)S(f) , (1.133)

where sgn(f) calculates the sign of f , only contains the non-negative components of
S(f). This operation is reversible due to the Hermitian symmetry of S(f):

S(f) =





1
2Sa(f) para f > 0

Sa(f) para f = 0
1
2Sa(−f)∗ para f < 0

= 1
2 [Sa(f) + Sa(−f)∗] . (1.134)

The analytical signal of s(t) is the inverse Fourier transform of Sa(f),

sa(t) ≡ F−1[Sa(f)] = F−1[S(f) + sgn(f) · S(f)] (1.135)

= F−1[S(f)] + F−1[sgn(f)] ? F−1[S(f)] = s(t) + ı
[

1
πt ? s(t)

]
= s(t) + ıŝ(t) ,
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where ? denotes the convolution.

ŝ(t) ≡ H[s(t)] ≡ 1
πt ? s(t) = 1

πP
∫ ∞

−∞

s(τ)

t− τ dτ , (1.136)

with P denoting Cauchy’s principal value, is the definition of the Hilbert transform
of s(t) 2.

Example 14 (Analytical signal of the cosine function): We consider the
signal s(t) = cosωt, where ω > 0. Now

ŝ(t) = cos(ωt− π
2

) = sinωt ,

sa(t) = s(t) + ıŝ(t) = cosωt+ ı sinωt = eıωt .

In general, the analytical representation of a simple sinusoidal function is ob-
tained by expressing it in terms of complex exponentials, discarding the negative
frequency components, and doubling the positive frequency components, as in
the example s(t) = cos(ωt+ θ) = 1

2
(eı(ωt+θ) + e−ı(ωt+θ)). Here, we get directly

from Euler’s formula,

sa(t) =

{
eı(ωt+θ) = eı|ω|teıθ if ω > 0

e−ı(ωt+θ) = eı|ω|te−ıθ if ω < 0
.

The analytical representation of a sum of sinusoidal functions is the sum of the

analytical representations of the individual sinuses.

We note that it is not forbidden to compute sa(t) for a complex s(t). But this rep-
resentation may be irreversible, since the original spectrum is usually not symmetric.
Therefore, with the exception of the case s(t) = e−ıωt with ω > 0, where,

ŝ(t) = ıe−ıωt (1.137)

sa(t) = e−ıωt + ı2e−ıωt = e−ıωt − e−ıωt = 0 ,

we assume real s(t).
We also note that, since s(t) = Re [sa(t)], we can retrieve the negative-frequency

components simply by discarding Im [sa(t)], which may seem counterintuitive. On
the other hand, the conjugate complex part s∗a(t) contains only the negative-frequency
components. Therefore, s(t) = Re [s∗a(t)] retrieves the suppressed positive frequency
components. In Exc. 1.5.4.7 we calculate the intensity of an electromagnetic wave.

1.5.3.2 Envelope and instantaneous phase

An analytical signal can also be expressed in polar coordinates,

sa(t) = |sa(t)|eıφ(t) , (1.138)

2Also holds,

ŝ(t) = − 1
π

lim
ε→0

∫ ∞
ε

s(t+ τ)− s(t− τ)

τ
dτ

H(H(s))(t) = −s(t) .
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in terms of an instantaneous amplitude or envelope |sa(t)| varying with time and an
instantaneous phase angle φ(t) ≡ arg[sa(t)]. In Fig. 1.9 the blue curve shows s(t) and
the red curve shows |sa(t)|.

Figure 1.9: Illustration of a function (blue) and the magnitude of its analytical representation
(red).

The time derivative of the unwrapped instantaneous phase is the instantaneous
angular frequency,

ω(t) ≡ dφ(t)

dt
. (1.139)

The instantaneous amplitude and the instantaneous phase and frequency are used
in some applications to measure and detect local characteristics of the signal or to
describe the demodulation of a modulated signal. Polar coordinates conveniently
separate amplitude and phase modulation effects.

Analytical signals are often frequency-shifted (down-converted) to 0 Hz, which can
create negative (non-symmetric) frequency components:

s′a(t) ≡ sa(t)e−ıω0t = sm(t)eı(φ(t)−ω0t) , (1.140)

where ω0 is an arbitrary reference angular frequency. The function s′a(t) is called
complex envelope or ’baseband’. The complex envelope is not unique, but determined
by the choice of ω0. This concept is often used to deal with band-pass signals. When
s(t) is a modulated signal, ω0 is conveniently chosen as the carrier frequency.

1.5.4 Exercises

1.5.4.1 Ex: Dirac’s δ function

a. Calculate
∫ π

0
dθ sin3 θ δ(cos θ − cos π3 ).

b. Now, be r0 a fixed three-dimensional vector with Cartesian coordinates x0, y0, and
z0. For the three-dimensional δ-function holds,

∫

V

f(r)δ(r− r0)d3r =

{
f(r0) if r0 is within the volume V

0 else
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_DistribuicaoDirac01.pdf
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In Cartesian coordinates, δ(3)(r−r0) ≡ δ(x−x0)δ(y−y0)δ(z−z0). Express δ(3)(r−r0)
in cylindrical coordinates (ρ, ϕ, z) as a product of three one-dimensional functions δ
in ρ− ρ0, ϕ− ϕ0, and z − z0.

1.5.4.2 Ex: Dirac’s δ function

Calculate the following expressions:

a.
∫ +1

−1
δ(x)[f(x)− f(0)] dx,

b.
∫ 3

−1
(x3 − x) sin

(
π
4x
)
δ(x− 2) dx,

c.
∫ 2π

0
sinx δ(cosx)dx,

d.
∫
R3 δ(r −R)d3r,

e.
∫
R3 δ(r −R)δ(z)d3r,

f.
∫∞
−∞

(
d
dxδ(x)

)
f(x)dx por integration parcial,

g.
∫∞
−∞

(
dn

dxn δ(x)
)
f(x)dx.

1.5.4.3 Ex: Dirac’s δ function

Show, ∫ ∞

−∞
1 · f̂(k)dk =

∫ ∞

−∞
1̂(x)f(x)dx = 2πf(0) ,

where f̂(k) ≡
∫∞
−∞ e−ıkxdx is the Fourier transform and f(x) ≡

∫∞
−∞ eıkxdk the inverse

transform. Also show,
1̂ = 2πδ(x) .

Help: 1 = eık0.

1.5.4.4 Ex: Dirac’s δ function

The following properties are, among others, characteristics for Dirac’s δ-function,

b∫

a

f(x)δ(x− c) dx =

{
f(c) if c ∈ [a, b]

0 else
.

Being g(x) a function with simple zero passages xn, that is, g(xn) = 0 and g′(xn) 6= 0,
we have

δ(g(x)) =
∑

n

1

|g′(xn)|δ(x− xn) .

Use these relationships to solve the following integrals,

a.
∫ 5

−2
dx (x2 − 5x+ 6) δ(x− 3).

b.
∫∞
−∞ dx x2 δ(x2 − 3x+ 2) .

1.5.4.5 Ex: Dirac’s δ function

Demonstrate the following property of the δ-function:

δ(ω1 − ω)δ(ω2 − ω) =
δ(ω1 − ω) + δ(ω2 − ω)

|ω1 − ω2|
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_DistribuicaoDirac02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_DistribuicaoDirac03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_DistribuicaoDirac04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_DistribuicaoDirac05.pdf
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1.5.4.6 Ex: Parametrization of currents

Parametrize the current density j(r′) of a current loop
a. in Cartesian coordinates and
b. in spherical coordinates.

1.5.4.7 Ex: Intensity of an electromagnetic wave

Calculate the intensity of the electromagnetic wave given by (a) ~E(r, t) = ~E0 cos(kz−
ωt) and (b) ~E(r, t) = ~E0eıkz−ıωt. Discuss!

1.6 Further reading

J.D. Jackson, Classical Electrodynamics [ISBN]

D.J. Griffiths, Introduction to Electrodynamics [ISBN]

D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics [ISBN]

H.M. Nussenzveig, Curso de F́ısica Básica: Eletromagnetismo (Volume 3) [ISBN]

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_DistribuicaoDirac06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_SinalAnalitico01.pdf
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Chapter 2

Electrostatics

We have already seen that all electromagnetic phenomena are due to charges, that
these charges are quantized and conserved, and that the superposition principle holds
for electromagnetic forces. In principle, it should be possible to explain all electro-
magnetic phenomena by calculation the forces exerted by every charge on every other
charge for arbitrary charge distributions. In reality however, the situation is much
more complex, because the forces not only depend on the position of the charges,
but also on their speed and acceleration. In addition, any information on the actual
state of a charge is only transmitted at the finite speed of light, which gives rise to
retardation effects.

To simplify the problem we will initially only consider immobile charges. The
theory dealing with immobile electric charges is named electrostatics. Its fundamental
task of electrostatics resides in calculating the force exerted by spatial distributions
of charges.

2.1 The electric charge and the Coulomb force

2.1.1 Quantization and conservation of the charge

We know that ordinary matter consists of electrically neutral atoms. An atom, con-
sists of a heavy nucleus and a shell of very light-weighted electrons. The nucleus, in
turn, is made up of a number of protons and neutrons. Each proton carries a positive
elementary charge Q = +e, that is, the charge is quantized in units of e. For an atom
to be neutral, the number of electrons (with negative charge −e) in the shell must be
equal to the number of atoms.

Macroscopic bodies are usually neutral, but that does not mean that positive and
negative charges are annihilated. What they can do, is to bunch by equal numbers
within restricted regions of space. Then, the forces exerted by the positive and neg-
ative charges of a specific region on other far-away charges compensate each other.
This effect is called shielding.

Nevertheless, it is possible, exerting work, to separate positive and negative charges,
to generate polarizations in dielectric materials or currents in conducting metals, and
to perform experiments with electrically charged macroscopic objects.

39
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2.1.2 Coulomb’s law

To begin with, we consider a single point charge Q at the position r′ exerting a force
on another charge located in r. The so-called Coulomb force is,

FC =
Qq

4πε0

r− r′

|r− r′|3 , (2.1)

where ε0 is a constant called the permittivity of free space. The Coulomb force de-
creases quadratically with the distance and is directed along the straight line connect-
ing the two charges. Note that the force can be attractive (for Qq < 0) or repulsive
(for Qq > 0). See the Excs. 2.1.3.1 to 2.1.3.22.

According to the superposition principle the force acting on the charge is not
influenced by the possible existence of other forces, for example, exerted by other
charges Qk located in other positions rk,

F = F1 + F2 + ... =
∑

k

Qkq

4πε0

r− rk
|r− rk|3

. (2.2)

Introducing an abbreviation,

~E =
∑

k

Qk
4πε0

r− rk
|r− rk|3

, (2.3)

called the electric field, we can express the Coulomb force as,

FC = q~E . (2.4)

Using the Dirac function we can parametrize the distribution of charges by,

%(r) =
∑

k

Qkδ
3(r− rk) . (2.5)

The charge of a single electron is small, and often many charges are involved in
electrical phenomena. Thus, the discrete character of the charge does not appear,
and the charge distribution appears as a smooth distribution of charge density, such
that, ∫

R
%(r′)dV ′ =

∫

R

∑

k

Qkδ
3(r′ − rk)dV ′ =

∑

k

Qk . (2.6)

With this (fluid model) approximation,

∑

k

Qk... −→
∫
dV ′%(r′)... , (2.7)

the Coulomb law can be written,

~E =

∫
%(r′)

4πε0

r− r′

|r− r′|3 dV
′ , (2.8)

since by inserting the discrete distribution (2.5) we recover Coulomb’s law (2.3).
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It is also possible to define from % a two-dimensional surface charge density σ or
a one-dimensional linear charge density λ using the Dirac function. For example, the
surface charge density on a spherical shell,

%(r) = σ(θ, φ)δ(r −R) , (2.9)

or the linear charge density on a ring,

%(r) = λ(φ)δ(r −R)δ(z) . (2.10)

Substituting % of the Coulomb law with these expressions, we reduce the dimension-
ality of the integral. We will study problems related to charge distributions in the
Excs. 2.2.4.1 to 2.2.4.12.

2.1.3 Exercises

The exercises showing a • are taken from Tipler’s book [96].

2.1.3.1 Ex: • Coulomb force

A point charge of −2.0µC and a point charge of 4.0µC are separated by a distance
L. Where should a third point charge be placed in order for the electrostatic force on
this third charge to be zero?

2.1.3.2 Ex: • Coulomb force

A point particle with a charge of −1.0µC is located at the origin; a second point
particle with a charge of 2.0µC is located at x = 0, y = 0.1 m; and a third point
particle with a charge of 4.0µC is located at x = 0.2 m, y = 0. Determine the
electrostatic force on each of the three particles.

2.1.3.3 Ex: • Coulomb force

A point charge of −5.0µC is located at x = 4.0 m, y = −2.0 m, and a second point
charge of 12.0µC is located at x = 1.0 m, y = 2.0 m.
a. Determine the absolute value, the direction and the orientation of the electric field
in x = −1.0 m, y = 0.
b. Calculate the absolute value, the direction and the orientation of the electric force
acting on an electron placed in the electric field at x = −1.0 m, y = 0.

2.1.3.4 Ex: Coulomb force

Imagine an electron near the Earth’s surface. At what point should we place a second
electron in order for the electrostatic force between the electrons to compensate the
gravitational force acting on the first electron?

2.1.3.5 Ex: Coulomb force

Three positive point charges Q1, Q2, and Q3 are placed at the corners of an equilateral
triangle with the edge length L = 10 cm. Calculate the value and direction of the
force acting on an electron located in the center of the triangle.
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2.1.3.6 Ex: Coulomb force

Two particles carrying equal charges q are placed at a mutual distance of r = 3 mm
and then released. The acceleration of the first particle after having been released is
a1 = 7 m/s2, and the acceleration of the second particle is a2 = 2 m/s2. The mass of
the first particle is m1 = 6 · 10−7 kg.
a. What is the mass of the second particle?
b. What is the charge of the particles?

2.1.3.7 Ex: Coulomb force

A small ball of graphite (mass m = 1 kg) suspended on a wire is touched by an
electrically charged plastic stick and picks up 1% of its charge. The result is that
the ball is displaced by an angle of 30◦, while the stick is held in place at the former
position of the ball. The distance between the center of the ball and the end of the
stick is 10 cm.
a. Calculate the force exerted by the wire on the ball?
b. Assume that the charge on the stick is fully concentrated at its end. What are the
charges on the ball and on the stick?

2.1.3.8 Ex: • Acceleration of charges

An electron has an initial velocity of v0 = 2 · 106 m/s in +x-direction. It enters a

region of uniform electric field ~E = (300 N/C) êx.
a. Determine the acceleration of the electron.
b. How long does it take for the electron to travel a distance of s = 10.0 cm along the
x-axis towards +x in the region that has field.
c. At what angle and in what direction does the motion of the electron deflect as it
travels 10.0 cm in x-direction?

2.1.3.9 Ex: • Acceleration of charges

A charged particle of 2.0 g is released from rest in a region that has a uniform electric
field, ~E = (300 kN/C)êx. After traveling a distance of 0.5 m in this region, the particle
has a kinetic energy of 0.12 J. Determine the particle’s charge.

2.1.3.10 Ex: Charged copper coins

The positive proton charge and the negative electron charge have the same abso-
lute value. Assume that the absolute values would have a relative difference of only
0.0001%. Consider copper coins with 3 · 1022 atoms. What would be the repulsive
force of two coins 1 m apart?
Help: A neutral copper atom contains 29 protons and the same amount of electrons.

2.1.3.11 Ex: Weight of the electron

A metal sphere is charged with Q = +1µC. Determine whether the mass of the
sphere increases or decreases due to the charging and calculate the value?
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2.1.3.12 Ex: The hydrogen atom

In the hydrogen atom the typical distance between the positively charged proton and
the negatively charged electron is d ∼ 5 · 10−11 m.
a. Calculate the Coulomb force.
b. Compare this force with the gravitational force between the two particles.
c. What should be the speed of the electron around the nucleus to compensate for
the gravitational attraction by the centrifugal force?

2.1.3.13 Ex: Exercise of understanding

Two metallic spheres are placed at a distance d from each other and respectively
charged with +Q and −2Q.
a. Do spheres attract or repel each other?
b. What happens if we let the spheres contact each other and then put them at the
same distance d. How much does the force change?

2.1.3.14 Ex: Charged sphere on a spring

A ball with the m is suspended on a spring with the spring constant f .
a. What will be the displacement of the ball due to its weight? What will be the
frequency of oscillation?
b. Now the ball is loaded with the charge Q and a second ball with the same charge
is approached from below the first ball. Derive the relationship between the position
of the first ball z1 and the position of the second z2. The position z1 = 0 is the
resting position of the spring, that is, the position that the spring would have without
suspended mass. CAUTION: you’ll get a third order equation in z1, don’t try to solve
it!
c. For which position z2 of the second ball does the first ball stay at the resting
position of the spring, that is, for which z2 do we find z1 = 0 to be solution? Are
there any other solutions? What are your interpretations?
d. What is the frequency of oscillation under these conditions, when ball 1 is only
slightly displaced around z1 = 0? Use the approximation 1

(a−x)2 ≈ 1
a2 + 2

a3x, which

holds for x� a.

2.1.3.15 Ex: Stability of a charge distribution

The charge distributions shown in the figure are given. All positive and negative
charges have the same absolute value.
a. Determine whether one of these distributions is stable? What happens in different
cases?
b. Is it possible to choose the absolute values of the charges in such a way as to make
the configurations stable?

2.1.3.16 Ex: Stability of a charge distribution

Three balls with mass m and each charged with the charge Q are placed in a parabolic
bowl. This can be described as a surface in space, where the coordinate z of the surface
is given by z = z(x, y) = A(x2 + y2). Gravitation shows into −êz direction. What is
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Figure 2.1: Geometry of charge distribution.

the distance the balls adopt, when we set as an additional condition, that all charges
are at the same height?

2.1.3.17 Ex: Ions in a harmonic potential

Two ions with the positive charge +e are confined to an isotropic harmonic potential.
Each ion has the potential energy U = 1

2mω
2r2, where r is the distance from the

center of the potential. The ions are at rest, only consider two dimensions.
a. What is the distance of the two ions from the center?
b. Calculate the distance for three identical ions.

2.1.3.18 Ex: Spheres on a wire

Two identical spheres with mass m = 0.1 kg are suspended at the same point of
a ceiling by a 1 m long wire and have the same charge. What is the value of the
charge if the two centers of the spheres are 4 cm apart. Use the approximation
sinα ≈ tanα ≈ α for small angles α.

2.1.3.19 Ex: Oscilloscope

We consider a simple model of an oscilloscope. Inside the device is a Braun tube,
inside which electrons are accelerated by a voltage U to a speed v. Then, the electrons
fly through the plates of a capacitor and are deflected by the electric field E of the
capacitor. (In a real oscilloscope there are two capacitors: one for horizontal deviation
and one for vertical.) Behind the capacitor, the electrons fly to a screen, where they
produce a bright spot.
a. Calculate the electron velocity v for an accelerating voltage of U = 1 kV. (Do not
consider relativistic effects!)
b. The capacitor has a length of l = 5 cm and a distance from the plates of d = 2 cm.
What is the maximum allowable voltage Umax at the capacitor to prevent electrons
from hitting one of the capacitor plates? (Electrons enter the capacitor in the center
between the plates.)
c. What should be the distance between the plates and the screen (which is 10 cm
wide), so that with maximum voltage Umax the entire area of the screen is used?
Comment: Disregard capacitor edge effects!
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2.1.3.20 Ex: Electron between charged plates

Between two parallel horizontal plates there is a homogeneous electric field |~E| =
2 · 103 N/C. The lower plate is charged with a positive charge, the upper plate with a
negative, such that the field is oriented upwards. The length of the plates is L = 10 cm,
their distance d = 2 cm. From the left edge of the bottom plate an electron is shot
at an initial velocity |v0| = 6 · 106 m/s under an angle 45◦ into the space between the
plates.
a. When will the electron hit one of the plates?
b. Which plate is eventually hit and at what horizontal distance from the firing point?

2.1.3.21 Ex: The Coulomb-Kepler problem

We consider two particles charged with charges Q1 and Q2 and masses m = m1 = m2

which, for simplicity, can only move along the êz-axis and are subject to mutual
Coulomb forces.
a. Derive the differential equations for the positions z1 and z2 of the two particles.
Reduce the number of variables of the problem by introducing the difference variable
z = z2 − z1 and establish the differential equation for z.
b. The differential equation obtained has the same shape as that of the Kepler problem
in mechanics, which, however, is not defined along an axis but on a plane. What are
the solutions to Kepler’s problem? What important physical quantity does not appear
to constrain the freedom of movement to one axis? What would be the impact of this
constraint on the solutions to Kepler’s problem? What is the additional degree of
freedom in the Coulomb-Kepler problem as compared to the Kepler problem?
c. Kepler’s differential equation is not easy to solve. Even so, we can learn something
by looking at the phase space diagram. For this, we consider two identical particles
Q = Q1 = Q2 and m = m1 = m2, placed at a distance z0. What is going to happen?
How will the velocities v1 and v2 of the two particles behave with respect to each
other? Derive a relationship between the distance z and the velocity v of one of the
particles (energy conservation). What is the value of the velocity for z →∞? Prepare
a phase space diagram in (z, v) for three different distances z0.

2.1.3.22 Ex: • Particle spinning around a charged wire

An infinitely long line uniformly charged with negative charge, has a charge density
of λ and is located on the z-axis. A small positively charged particle has mass m and
a charge q and is on circular orbit of radius R in the xy-plane centered on the charge
line.
a. Deduce an expression for the velocity of the particle.
b. Obtain an expression for the period of the particle’s orbit.

2.2 Properties of the electric field

In principle the fundamental problem of electrostatics is solved by Coulomb’s law.
In practice however, the calculation of the electric field generated by a charge distri-
bution can be complicated. On the other hand, electrostatic problems often exhibit
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symmetries, which allow for their resolution by other techniques avoiding the integrals
of Coulomb’s law.

2.2.1 Field lines and the electric flux

When we calculate the electric vector field for a charge distribution on a matrix of
points in space, we get diagrams like the one shown in Fig. 2.2. The arrows represent,
through the lengths of the vectors, the value of the field and, through the orientation
of the vector, the direction of the force exerted by the field. The diagram suggests
to connect the arrows thus forming lines called field lines. These lines are nothing
more than the trajectories taken by test charges placed inside the field 1. Field lines
can never intersect (otherwise the direction of force acting on a test charge would
be ambiguous) and can never begin or end in free space. They always start from a
positive charge and end up in a negative charge.

Figure 2.2: Field lines of two equal charges (right) and two opposed charges (left).

The electric flux is a measure for the density of field lines crossing a surface. As we
have already said, the field line density corresponds to the amplitude of the electric
field ~E . The normal vector of the surface S being locally perpendicular to the plane,
we must calculate the flux by taking the integral of the scalar product,

ΨE ≡
∫

S
~E · dS . (2.11)

Then, instead of illustrating the amplitude of a field through the length of the arrows
representing the force exerted on a charge, ~E ∝ F, we can illustrate the amplitude
through the local density of lines field, ~E ∝ ΨE .

The concept of the flux allows us to quantitatively formulate the statement, that
field lines can not start or end in free space, but always come out (or penetrate) into
charges. For this, we calculate the flux through a sphere around an electric charge q
located at the origin using Coulomb’s law:

∮

spherical surface

~E · dS =

∮

spherical surface

1

4πε0

q

|r|2 êr · r2 sin θdθdφêr =
q

ε0
. (2.12)

1Note, that the representation by lines (instead of vectors) misses the information about the local
field strength. However, this information is still encoded in the local density of the field lines.
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With the superposition principle we can generalize this result to arbitrary distribu-
tions of charges Q. The so-called Gauß’ law, or Maxwell’s third equation,

∮

∂V
~E · dS =

Q

ε0
, (2.13)

states, that the number of field lines entering a charge-free volume V through a closed
surface ∂V must equal the number of lines leaving it. The law also states that there
exist electric charges acting as sources or drains of field lines. We will resolve flux
problems in the Excs. 2.2.4.13 to 2.2.4.29.

2.2.2 Divergence of the electric field and Gauß’ law

Gauß’ integral theorem (1.42) allows us to rewrite Gauß’ law (2.13). On the one hand,
we have, ∮

∂V
~E · dS =

∫

V
∇ · ~EdV , (2.14)

on the other hand, we can express the total charge inside the volume V as a sum over
the charge distribution,

Q =

∫

V
%(r)dV . (2.15)

comparing the integrands, we obtain the differential form of Gauß’ law or Maxwell’s
third equation:

∇ · ~E =
%

ε0
. (2.16)

The Gauß law can also be derived directly from the general Coulomb law: We
calculate the divergence of the field of formula (2.8),

∇ · ~E = ∇r ·
∫
%(r′)

4πε0

r− r′

|r− r′|3 dV
′ =

1

4πε0

∫
%(r′)∇r ·

r− r′

|r− r′|3 dV
′ (2.17)

=
1

4πε0

∫
%(r′)4πδ3(r− r′)dV ′ =

%(r)

ε0
.

In the integral form, Gauß’ law is very useful for calculating electric fields partic-
ularly in situations with a high degree of symmetry. Let us discuss some examples in
the following.

Example 15 (Electric field outside a charged sphere): We consider a sphere
with radius R carrying the total charge Q. Gauß’ law says,∮

∂V

~E · dS =
Q

ε0
,

where we choose as volume a sphere with radius r > R. At first glance, this
does not seem to help much because the field, in which we are interested, is
under the integral. But we can explore the symmetry of the system to simplify
the integral, since ~E = E êr and dS = dSêr, such that we can write the integral,∫ π

0

∫ 2π

0

Er2 sin θdθdφ = 4πr2E =
Q

ε0
.
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Hence,

~E =
Q

4πε0r2
êr .

This is precisely Coulomb’s law. It is interesting to note that the field does not

depend on the distribution % of the charge within the volume. Of course, to

take advantage of the symmetry of the system, it is important to choose the

adequate volume.

Example 16 (Box containing an interface): Let us now give another exam-
ple of the utility of Gauß’ law. We are interested in the electric field generated
by an infinitely extended plane carrying a homogeneous surface charge density
σ. By symmetry, the ~E-field must cross the plane perpendicularly and have
opposite directions above and below the plane. We now imagine a rectangular
pill box enclosing a small area of the plane, so that two surfaces of the box (with
area S) are parallel to the plane. Inside the box we find the charge,

Q = ε0

∮
Sbox

~E · dS = ε0

∫
Supper

EdS + ε0

∫
Slower

EdS = 2SE .

On the other hand, Q =
∫
Vbox

%dV = σS. Hence,

~E =
σ

2ε0
n̂ .

It may seem strange that the electric field does not depend on the distance from

the plane, but this is due to the fact that the plane is supposed infinite, which

is an unrealistic concept. For a limited surface we expect field components not

being perpendicular to the interface, which come from the edges of the surface.

2.2.3 Rotation of the electric field and Stokes’ law

Stokes’ integral theorem (1.40) allows us to rewrite Maxwell’s fourth equation(2.23).
From ∮

∂S
~E · dr = 0 =

∫

S
(∇× ~E) · dS , (2.18)

we obtain the differential form of Maxwell’s second equation:

∇× ~E = 0 . (2.19)

The second Maxwell equation (applied to electrostatics) can also be derived di-
rectly from the general Coulomb law: We calculate the rotation of the field of formula
(2.3),

∇× ~E = ∇r ×
∫
%(r′)

4πε0

r− r′

|r− r′|3 dV
′ =

1

4πε0

∫
%(r′)∇r ×

r− r′

|r− r′|3 dV
′ = 0 . (2.20)

The fact that the rotation of any electrostatic field must vanish is a severe constraint.
For example, there is no charge distribution leading to a field of the form ~E = yêx.

A direct consequence of this law is that we can introduce the concept of the
potential. This is fundamental, because electrodynamics can be fully formulated in
terms of scalar potentials. We will devote the whole next section to electric potentials.
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2.2.4 Exercises

2.2.4.1 Ex: Use of Dirac’s function in Coulomb’s law

Show how the following Coulomb law formulas for one-, two- and three-dimensional
density distributions,

~E(r) =
1

4πε0

∫

V

r− r′

|r− r′|3 ρ(r′)dV ′

~E(r) =
1

4πε0

∫

A

r− r′

|r− r′|3σ(r′)dA′

~E(r) =
1

4πε0

∫

C

r− r′

|r− r′|3λ(r′)dC ′

are linked using Dirac’s δ-function, defined by,

δ(x) =

{ ∞ for x = 0

0 for x 6= 0

}
such that

∫
f(x)δ(x− a)dx = f(a)∞ 1

∞ = f(a) .

Use the examples of a. A linear charge distribution along the x-axis, given by ρ(r′) =
λ(x′)δ(y′)δ(z′), and b. a surface charge distribution in the z = 0 plane, given byρ(r′) =
σ(x′, y′)δ(z′).

2.2.4.2 Ex: Electric field generated by a linear charge distribution

Calculate the electric field generated by a linear charge distribution. Analyze the field
in a remote region.

2.2.4.3 Ex: Electric field produced by a charged disc

a. Calculate the electric field along the symmetry axis generated by a thin disk of
radius R evenly charged with the charge Q.
b. Discuss the limit R→∞ assuming that the surface charge density is kept constant.

2.2.4.4 Ex: Electric field produced by a spherical layer

A charge q is deposited on a solid conducting sphere of radius R.
a. Parametrize the charge distribution ρ(r).
b. Determine the surface charge density σ on the sphere’s surface.
c. Using the Gauß law,

∮
∂V

~E(r)·da = Q
ε0

, calculate the electric field inside and outside
the sphere.
d. Using the Coulomb law, ~E(r) = 1

4πε0

∫
A

r−r′
|r−r′|3σ(r′)dA′ in spherical coordinates,

r′ =



R sin θ′ cosφ′

R sin θ′ sinφ′

R sin θ′


 and dA′ = R2 sin θ′dθdφ′ ,
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calculate the electric field Ez(z) along the z-axis in- and outside the sphere. Help:

∫ R

−R

z − z′
√
z2 − 2zz′ +R2

3 dz
′ =





−2R
z2

0
2R
z2

for

z < −R
−R < z < R

R < z

.

2.2.4.5 Ex: Field of a homogeneously charged sphere

Calculate with the Gauß law the electric field of a homogeneously charged sphere
(charge Q, radius R)
a. for r < R and
b. for r ≥ R.

2.2.4.6 Ex: Field of a charge distribution with spherical symmetry

The electric field generated by a spherically symmetric charge distribution ρ(r) can
be given in the form,

~E(r) =
r

r3
4π

∫ r

0

dr′ r′ 2 ρ(r′) ,

where the origin is in the center of the sphere and r = |r|.
a. Show that div~E = 4π ρ and rot~E = 0.
b. Calculate the field for a sphere of radius R, which is homogeneously charged in the
entire volume with the total charge Q.
c. Resolve (b) for a homogeneously charged hollow concentric sphere with inner radius
Ri, outer radius Ra and full load Q.
d. Resolve (c) for the case, that the center of the hollow spherical part is displaced
by a vector d with respect to the center of the spherical surface.
Help: The electric field is an additive quantity.

2.2.4.7 Ex: Field of a charge distribution with spherical symmetry

A sphere of radius R is in a vacuum. It is made of a material with a constant
permittivity ε and carries the charge q in its center.
a. Calculate the field the electrostatic field ~E inside and outside the sphere.
b. Calculate the electrostatic potential Φ in the entire space.

2.2.4.8 Ex: Charge distribution

We consider the charge density ρ(r) = cr
∫ R

0
dr′δ(r′ − r), where r = |r|, R > 0 and

c = const. The total charge be Q.
a. Make a scheme of the function ρ(r). What is the relationship between the constant
c and the total charge Q?
b. Start by showing that the electric field created by a spherically symmetric charge
distribution ρ can be written as ~E(r) = r

r3

∫ r
0
dr′r′2 1

ε0
ρ(r′) . Here, r is the vector

starting from the origin at the center of symmetry and reaching the surface. Determine
the absolute value and direction of the electric field ~E(r) for |r| < R and |r| > R for

the given charge distribution. Make a scheme of the profile |~E(r)|.
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2.2.4.9 Ex: • Charge distribution

A thin, square and conductive sheet has d = 5.0 m long edges and a charge of
Q = 80µC. Assume that the load is evenly distributed on the faces of the sheet.
a. Determine the charge density on each face of the sheet and the electric field in the
vicinity of one face.
b. The sheet is placed to the right of an infinite, non-conductive plane charged with
the charge density σinf = 2.0 µC/m

2
, with the faces of the sheet parallel to the plane.

Determine the electric field on each face of the sheet and determine the charge density
on each face.

2.2.4.10 Ex: • Charge distribution

A large, flat, non-conductive and non-uniformly charged surface is placed along the
x = 0 plane. At the origin, the charge density is σ = 3.1µC/m2. At a short distance
from the surface in the positive direction of the x-axis, the x-component of the electric
field is Edir = 4.65 ·105 N/C. What is the value of Ex a short distance from the surface
in the negative direction of the axis x.

2.2.4.11 Ex: • Charge distribution

An infinite flat non-conductive blade with surface charge density σ1 = +3.0µC/m2

is located in the y0 = −0.6 m plane. A second infinite flat blade with surface charge
density of σ2 = −2.0µC/m2 is located in the x0 = 1.0 m plane. Finally, a thin
non-conductive spherical shell with radius R = 1.0 m and its center in the z0 = 0
plane at the intersection of the two charged blades, has a surface charge density of
σ3 = −3.0µC/m2. Determine the magnitude, direction, and orientation of the electric
field along the x-axis and
a. x1 = 0.4 m and
b. x2 = 2.5 m.

2.2.4.12 Ex: • Charged sphere

A solid non-conducting sphere with radius R = 1.0 cm carries a uniform volumetric
charge density. The magnitude of the electric field at a distance r = 2.0 cm from the
center of the sphere is Er = 1.88 · 103 N/C.
a. What is the volumetric charge density of the sphere?
b. Determine the magnitude of the electric field at a distance d = 5.0 cm from the
center of the sphere.

2.2.4.13 Ex: Electrical flow

A point charge Q is placed in the center of a hypothetical ball with radius R, which
on one side is cut at a height h. What is the flow of electric field ~E through the plane
of the cut A illustrated in the figure?
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Figure 2.3: Scheme.

2.2.4.14 Ex: Electrical flow

The cube shown in the figure has an edge length of d = 1.4 m and is located inside
an electric field.
a. Calculate the electrical flux through the right surface of the cube for an electric
field given by ~E = −3 V/m ·êx + 4 V/m ·êz. What is the total flux across the entire
surface of the cube?
b. Calculate the total flux across the entire surface of the cube for the electric field
~E = −4 V/m

2 ·êx + (6 V/m +3 V/m
2 ·y)êy. What charge is contained in the cube?

y

x

z

Figure 2.4: Scheme.

2.2.4.15 Ex: Electrical flow

Calculate the electric field flux ~E(r) = E0êz through the semi-sphere with radius R
shown in the figure.

E

z

R

Figure 2.5: Scheme.

2.2.4.16 Ex: Electrical flow

Calculate the flow of the vector field with cylindrical symmetry ~E(r) = E0êρ through
the half cylindrical surface shown in the figure with radius R and length L.

2.2.4.17 Ex: Electric field of a charged sheet

An infinitely extended non-conductive sheet carries a charge with a surface density
of 0.1µC/m2 on either side. What is the distance of the equipotential surfaces for a

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_FluxoEletrico02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_FluxoEletrico03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_FluxoEletrico04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_FluxoEletrico05.pdf


2.2. PROPERTIES OF THE ELECTRIC FIELD 53

z

R

L

E

Figure 2.6: Scheme.

potential difference of 50 V?

2.2.4.18 Ex: Electric field between charged planes

Consider two thin, non-conductive planes with infinite length perpendicular to the
x-axis and crossing this axis at the positions x1 and x2 with x1 < x2. The planes are
uniformly charged with charge densities σ2. Calculate the electric fields in the three
regions x < x1 and x1 < x < x2 and x2 < x. Discuss the particular cases σ2 = σ1

and σ2 = −σ1.

2.2.4.19 Ex: Electric field of a photocopier

The electric field just above the surface of the electrically charged drum of a photo-
copier has the absolute value 2.3 · 105 N/C. The drum has a length of 42 cm and a
diameter of 12 cm.
a. What is the charge density on the surface supposed conductive?
b. What is the total charge on the drum?
c. Decreasing the drum to 8 cm in order to build a more compact photocopier, the
field on the surface must remain the same. What should the charge be in this case?

2.2.4.20 Ex: Geiger counter

A Geiger-Müller meter consists essentially of a metal tube filled with gas (inner radius
ra) with a thin wire inside (radius ri). A high voltage is applied between the two.
The meter serves, for example, to detect charged particles, which produce pairs of
electrons and ions from the gas, which are then extracted by an applied voltage and
detected as an electrical signal.
a. Calculate the potential φ(r), where φ(ra) = 0 and φ(ri) = U = 1000 V.
b. Be ri = 15µm, ra = 1 cm. Calculate the strength of the field at the tube’s surface.
c. The average free path in the gas is L = 3µm. At what distance RI from the wire
does an avalanche form, that is, an electron stopped due to a collision is accelerated
over a distance L up to the ionization energy EI = 5 eV and, thus, can generate
another electron-ion pair in the subsequent collision?

2.2.4.21 Ex: • Electrical flow

A thin, non-conductive uniformly charged spherical shell with radius R, has a total
positive charge equal to Q. A small piece is removed from the surface.
a. What are the absolute value, the direction and the orientation of the electric field
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Figure 2.7: Geiger counter.

at the center of the void?
b. The piece is placed back into the void. Determine the electrical force exerted on
the piece.
c. Using the strength of the force, calculate the electrostatic pressure that tends to
expand the sphere.

2.2.4.22 Ex: • Flow through a cone

An imaginary straight circular cone with base angle θ and base radius R is in a charge-
free region exposed to a uniform electric field ~E (the field lines are vertical to the cone
axis). What is the ratio between the number of field lines per unit area entering the
base and the number of lines per unit area entering the cone’s conical surface. Use
Gauß’s law in your answer.

2.2.4.23 Ex: Flow of a field

Consider the rectangle with the corners,



xi
yi
zi


 =




b
a√
2

0


 ,




0
a√
2

0


 ,




0

0
a√
2


 ,




b

0
a√
2




and calculate the flux integral of the field A(r) through the area F of the rectangle,

A(r) =




y2

2xy

3z2 − x2


 .
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2.2.4.24 Ex: Flow of a vector field

Calculate the flux of the vector field A(r) across the surface of a sphere of radius R
around the origin of the coordinate system for
a.

A(r) = 3
r

r2
.

b.

A(r) =




3z − 2y

x+ 5z

y + x


 .

2.2.4.25 Ex: Van de Graaff generator

The spherical shell (radius R) of a Van de Graaf generator must be charged until a
potential difference of 106 V. What should be the minimum diameter of the sphere
to avoid lightning discharge?
Help: The field for disruptive discharge in air is 3 · 106 V/m.

2.2.4.26 Ex: • Van de Graaff accelerator

Protons are released from rest in a Van de Graaff accelerator system. The protons
are initially located at a position where the electrical potential has a value of 5.0 MV,
and then, they travel through vacuum to a region where the potential is zero.
a. Determine the final velocity of these electrons.
b. Determine the magnitude of the accelerating electric field if the potential changes
uniformly over a distance of 2 m.

2.2.4.27 Ex: Faraday cage

Show that in a space confined by a grounded surface the electric field must disappear.

2.2.4.28 Ex: • Waveguide

The figure shows a portion of the cross section of an infinitely long concentric cable.
The inner conductor has a linear charge density of 6 nC/m and the outer conductor
has no net charge.
a. Determine the electric field for all values of R, where R is the distance perpendicular
to the common axis in the cylindrical system.
b. What are the surface charge densities on the surfaces inside and outside the outer
conductor?

2.2.4.29 Ex: Fundamental equations of electrostatics

a. Gives the fundamental electrostatic equations in integral and differential form.
b. Gives the fundamental equation in terms of the electrostatic potential.
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Figure 2.8: Waveguide.

2.3 The scalar electrical potential

We already noted that the electric field generates a force that can accelerate a charge
Q along a field line. Therefore, the electric field contains a potential energy which
it can convert into kinetic energy by exerting work, W =

∫
F · r = Q

∫
~E · r. The

quantity 2,

Φa,b ≡
∫

Ca,b

~E · dr (2.21)

is called the difference of electric potential between the points a and b connected by
a path Ca,b.

Stokes’ law (2.18) allows us to state, that the potential difference (2.21) does not
depend on the path chosen, because for two different paths C and C′ between the
points a and b we have,

∫

C(a,b)

~E · dr−
∫

C′(a,b)

~E · dr = 0 . (2.22)

Consequently, the potential defined between a reference point O and any observation
point r is unambiguous,

Φ(r) = −
∫ r

O
~E · dr , (2.23)

and the potential difference between two points a and b is well defined,

Φ(b)− Φ(a) = −
∫ b

a

~E · dr . (2.24)

The fundamental theorem for gradients, on the other hand, says that,

Φ(b)− Φ(a) =

∫ b

a

(∇Φ) · dr . (2.25)

These results being valid for any choice of points a and b, we conclude by comparing
these two equations,

~E = −∇Φ . (2.26)

2We note that the electric potential is linked to potential energy, but is not the same.
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Example 17 (Potential of a point charge): For an electric field generated
by an electric charge e located at the origin we can easily calculate the integral
along a path C between two points a and b using Coulomb’s law:∫

C

~E · dr =

∫ b

a

1

4πε0

e

|r|2 êr · (êrdr + êθrdθ + êφr sin θdφ)

=
1

4πε0

∫ b

a

e

r2
dr =

1

4πε0

(
e

ra
− e

rb

)
.

With the superposition principle we can generalize this result for distributions

of arbitrary charges Q.

Some comments are appropriate at this point:

� The formulation by the potential (a scalar field) instead of the vector electric
field is more compact. It summarized the Coulomb (2.8) law along with the
constraint (2.19).

� The reference point O is arbitrary. Exchanging this reference point by another
O′ only adds a global constant to the potential,

Φ′(r) = −
∫ r

O′
~E · dr = −

∫ O

O′
~E · dr−

∫ r

O
~E · dr = K + Φ(r) , (2.27)

but does not affect neither the difference of two potentials,

Φ′(b)− Φ′(a) = Φ(b)− Φ(a) , (2.28)

nor the electric field,
∇Φ′ = ∇Φ . (2.29)

We conclude that the potential is not a real quantity, but a mathematical trick
to simplify our life 3. Generally, the reference point is placed at infinity, O =∞,
fixing the free choice of the global constant by,

Φ(∞) ≡ 0 . (2.30)

� In the same way as the electric field, the electric potential also obeys the super-
position principle.

2.3.1 The equations of Laplace and Poisson

We already learned the two equations defining the electrostatic field (2.19) and (2.16),

that is, ∇× ~E = 0 and ∇· ~E = %/ε0. Let us now rewrite these equations for the electric
potential,

∇× (∇Φ) = 0 , ∇ · ∇Φ = ∆Φ = −%/ε0 . (2.31)

Thus, the formulation by the potential (2.21) automatically satisfies the require-
ment (2.22), that the rotation must disappear.

On the other side, we have a second-order differential equation called the Poisson
equation. In regions with no charge, this equation turns into a Laplace equation,

∆Φ = 0 . (2.32)
3We shall see later that this conclusion must be reviewed in quantum mechanics in the context

of the Aharonov-Bohm effect.
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2.3.2 Potential generated by localized charge distributions

The Poisson equation allows us to reconstruct a charge distribution once its potential
is known. However, we usually want to do the opposite. Let us start with a point
charge, located at the origin, the potential of which is,

Φ(r) = −
∫
~E · dr′ =

−1

4πε0

∫
Q

r′2
dr′ =

1

4πε0

Q

r′

∣∣∣∣
r

∞
=

1

4πε0

Q

r
. (2.33)

Figure 2.9: The fundamental laws of electrostatics relate the three fundamental quantities,
the charge distribution %, the electric field ~E , and the electric potential Φ.

According to the superposition principle, for a discrete distribution of charges Qk
located at the positions rk,

Φ(r) =
1

4πε0

∑

k

Qk
|r− rk|

. (2.34)

Finally, for a continuous distribution %(r′), we obtain the fundamental solution of the
electrostatic problem,

Φ(r) =
1

4πε0

∫
dQ′

|r− r′| =
1

4πε0

∫
%(r′)

|r− r′|d
3r′ . (2.35)

From this equation we can derive the Coulomb law (2.8).
Low-dimensional distributions can be treated by suitable parametrization, as in

the examples (2.9) and (2.10).

2.3.3 Electrostatic boundary conditions

We have already noticed that the electric field always suffers a discontinuity when
passing through a surface charge distribution. To study this, we consider a charged
interface traversed by an external electric field ~Eext. Now, we make two thought
experiments: (1) We envision a rectangular pill box enclosing a small part of the
interface, as shown in Fig. 2.10. The height ε of the box is so small that the flux
through the sides of the box can be neglected. With this,

∮
~E · dS = 1

ε0
Q = 1

ε0
σS , (2.36)
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where ~E is the total electric field (that is, the sum of the field generated by the surface

charge and field ~Eext). A is the surface of the box. This gives,

E⊥top − E⊥bottom = 1
ε0
σ . (2.37)

(2) We imagine a rectangular surface perpendicular to the interface and cutting
through the interface. As shown in Fig. 2.10, the height ε of the surface is so small
that the potential difference along the vertical branches can be neglected. With this,

∮
~E · dl =

∫
~Etop · dl +

∫
~Ebottom · dl = (~Etop − ~Ebottom) · l = 0 , (2.38)

where l is the length of the surface. This gives,

~E‖top = ~E‖bottom . (2.39)

That is, when traversing a charged interface, only the part of the electric field
which is perpendicular to the interface suffers a discontinuity. This simply reflects
the fact that the charge generates its own electric field, which is perpendicular to the
interface and superposes to the external field.

Figure 2.10: Surface S around a box-shaped volume enclosing a small part of the interface,
path l around a small area cutting through the interface, and potential difference between
two points a and b.

The potential, on the other hand, is continuous, since the integral between a point
a above the interface and a point b below is,

∫ a

b

~E · dl = Φ(b)− Φ(a)
a→b−→ 0 . (2.40)

We study the electrostatic boundary conditions in Exc. 2.3.4.18.

2.3.4 Exercises

2.3.4.1 Ex: Earnshaw theorem

Show that the electrostatic potential in free space does not exhibit a maximum. Com-
ment: This is why it is not possible to confine charged particles in electrostatic fields.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_PotencialEletrico01.pdf
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2.3.4.2 Ex: • Electrical potential between point charges

A point particle with a charge equal to +2µC is fixed at the origin.
a. hat is the electrical potential V at a point 4 m from the origin, considering that
V = 0 at infinity?
b. How much work must be done to bring a second point charge with a charge of
+3µC from infinity to a distance of 4.0 m from the first charge?

2.3.4.3 Ex: • Electrical potential between point charges

Three identical point particles with charge q are located at the corners of an equilateral
triangle that is circumscribed in a circle of radius a contained in the plane z = 0 and
centered at the origin. The values of q and a are +3.0µC and 60 cm, respectively.
(Consider that, far from all charges, the potential is zero.)
a. What is the electrical potential at the origin?
b. What is the electrical potential at the point of the z-axis being at z = a?
c. How would your responses to the parts (a) and (b) change if the charges q were
larger? Explain your answer.

2.3.4.4 Ex: • Electrical potential between point charges

Two identical positively charged point particles are fixed to the x-axis at x = +a and
x = −a.
a. Write down an expression for the electrical potential V (x) as a function of x for all
points on the x-axis.
b. Draw V (x) versus x for all points on the x-axis.

2.3.4.5 Ex: • Electrical potential between point charges

The electric field on the x-axis due to a fixed point charge at the origin is given by
~E = (b/x2)êx, where b = 6.0 kV ·m and x 6= 0.
a. Determine the amplitude and sign of the point charge.
b. Determine the potential difference between the points on the x-axis at x = 1 m and
x = 2 m. Which of these points is at a higher potential?

2.3.4.6 Ex: • Dielectric disruption of air

Determine the maximum surface charge density σmax that can exist on the surface of
any conductor before dielectric discharge in the air occurs.

2.3.4.7 Ex: • Potential energy of a charged sphere

a. How much charge is on the surface of an isolated spherical conductor that has a
radius of R = 10.0 cm and is charged with 2.0 kV?
b. What is the electrostatic potential energy of this conductor? (Consider that the
potential is zero far from the sphere.)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_PotencialEletrico02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_PotencialEletrico03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_PotencialEletrico04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_PotencialEletrico05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_PotencialEletrico05b.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_PotencialEletrico06.pdf
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2.3.4.8 Ex: • Energy of a particle in a potential

Four point charges are attached to the vertices of a square centered on the origin.
The length of each side of the square is 2a. The charges are located as follows: +q is
in (−a,+a), +2q is in (+a,+a), −3q is in (+a,−a), and +6q is in (−a,−a). A fifth
particle with mass m and charge +q is placed at the origin and released from rest.
Determine its velocity when it is far from the origin.

2.3.4.9 Ex: • Energy of a particle in a potential

Two metallic spheres have radii of 10 cm each. The centers of the two spheres are
separated by 50 cm. The spheres are initially neutral, but a charge Q is transferred
from one sphere to another, creating a potential difference between them of 100 V. A
proton is released from rest at the surface of the positively charged sphere and travels
to the negatively charged sphere.
a. What is the kinetic energy once it reaches the negatively charged sphere?
b. At what velocity does it collide with the sphere?

2.3.4.10 Ex: • Potential of connected spheres

A spherical conductor of radius R1 is charged with Vi = 20 kV. When it is connected
through a very thin and long conductive wire to a second very distant spherical
conductor, its potential drops to Vf = 12 kV. What is the radius of the second
sphere?

2.3.4.11 Ex: • Potential of a charged disk

Along the central axis of a uniformly loaded disc, at a point 0.6 m away from the center
of the disc, the potential is 80 V and the field intensity is 80 V/m. At a distance of
1.5 m, the potential is 40 V and the electric field strength is 23.5 V/m. (Consider that
the potential is very far from the disk). Determine the total charge of the disk.

2.3.4.12 Ex: • Potential of spherical shells

Two conductive concentric spherical shells have equal charges with opposite signs.
The inner shell has an external radius a and the charge +q; the outer shell has an
internal radius b and the charge −q. Determine the potential difference Va − Vb
between the shells.

2.3.4.13 Ex: • Electrical potential of a disk

A disk of radius R has a surface charge distribution given by σ = σ0r
2/R2, where σ0

is a constant and R is the distance from the center of the disk.
a. Determine the total charge on the disk.
b. Find the expression for the electrical potential at a distance z from the center of
the disk along the axis that passes through the center of the disk and is perpendicular
to its plane.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_PotencialEletrico07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_PotencialEletrico08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_PotencialEletrico09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_PotencialEletrico10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_PotencialEletrico11.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_PotencialEletrico12.pdf
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2.3.4.14 Ex: • Electrical potential of a rod

A stick of length L has a total charge Q evenly distributed along its length. The stick
is placed along the x-axis with its center at the origin.
a. What is the electrical potential as a function of the position along the x-axis for
x > L/2?
b. Show that for x� L/2, your result reduces to that due to a point charge Q.

2.3.4.15 Ex: Potential of a thin disk

Calculate the electrical potential of a thin disc homogeneously charged with the charge
Q along the symmetry axis.

2.3.4.16 Ex: Electrical potential of four wires

Consider four wires oriented parallel to the z-direction, as shown in the figure. The
wires are charged with the charge per unit length q/L.
a. Calculate the electrical potential as a function of x and y.
b. Expand the potential around x = 0 and y = 0 (|x|, |y| � a) up to second order.
What is the shape of the potential at this point?

a

-a

-a a

+q/L

-q/L-q/L

+q/L

y

x

Figure 2.11: Four wires.

2.3.4.17 Ex: Stokes law

Consider a thin straight wire of infinite length uniformly charged with linear charge
density λ.
a. Parametrize the linear load density using the δ-function.
b. Using Gauss’ law, calculate the electric field.
c. Calculate the path integral

∫
~E ·ds for the path parametrized by s(t) = ρ(êx cos t+

êy sin t) with t ∈ [0, 2π].

d. From the electric field obtained in (b) calculate ∇× ~E in Cartesian or cylindrical
coordinates.
Help: ∇× S = êρ

1
ρ

[
∂Sz
∂φ − ρ

∂Sφ
∂z

]
+ êφ

[
∂Sρ
∂z − ∂Sz

∂ρ

]
+ êz

1
ρ

[
∂
∂ρ (ρSφ)− ∂Sρ

∂φ

]
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_PotencialEletrico13.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_PotencialEletrico14.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_PotencialEletrico15.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_PotencialEletrico16.pdf
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2.3.4.18 Ex: Surface of a conductor

Consider an arbitrary macroscopic conductor whose surface is closed and smooth.
Starting from Gauss’s law and the electrostatic rotation of the electric field:
a. calculate the electric field inside the conductor;
b. obtain the normal component of the electric field on the outer surface of the con-
ductor in terms of the surface charge density;
c. obtain the tangential component of the electric field on the outer surface of the
conductor.

2.4 Electrostatic energy

We calculate the work required to move a test charge q between two points a and b
within the potential created by a charge distribution,

W = −
∫ b

a

F · dr = −q
∫ b

a

~E · dr = q[Φ(b)− Φ(a)] . (2.41)

Since the work does not depend on the path, we call the potential conservative. Taking
the test charge from the reference point to infinity,

W = q[Φ(b)− Φ(∞)] = qΦ(b) . (2.42)

In this sense, the potential is nothing more than the energy per unit of charge q
required to take a particle from infinity to a point r.

2.4.1 Energy of a charge distribution

The next question is, what energy is needed to put together a distribution of charges
taking them one by one from infinity to predefined points. Every charge Qk uses an
amount of work Wk, only the first charge does not, W1 = 0. Using the abbreviation,

Wk,m ≡
1

4πε0

QkQm
|rk − rm|

, (2.43)

the work is easily calculated for the second charge, W2 = W1,2. For the third and
fourth charge we need additionally the amounts of work,

W3 = W1,3 +W2,3 and W4 = W1,4 +W2,4 +W3,4 . (2.44)

The general rule is obvious: For N charges we need in total to provide the work,

W =

N∑

k=1

Wk =

N∑

k=1

N∑

m=1
m<k

Wk,m =
1

2

N∑

k=1

N∑

m=1
m 6=k

Wk,m . (2.45)

Explicitly, calling Φ the potential created by all charges minus the charge Qk,

Φ(rk) ≡
N∑

m=1
m 6=k

1

4πε0

Qm
|rk − rm|

, (2.46)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_CondicaoContorno01.pdf
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we can write the energy as,

W = 1
2

∑

k

QkΦ(rk) . (2.47)

For continuous distributions, this equation turns into,

W = 1
2

∫
ΦdQ = 1

2

∫
%ΦdV . (2.48)

2.4.2 Energy density of an electrostatic field

The energy of a continuous charge distribution can be rewritten using Gauß’ law,

W = ε0
2

∫
(∇ · ~E)ΦdV . (2.49)

Integration by parts allows transferring the derivative of ~E to Φ,

W = ε0
2

[∮

∂V
Φ~E · dS−

∫

V
~E · (∇Φ)dV

]
. (2.50)

The surface integral can be neglected, because we can choose the integration volume
arbitrarily large V. Expressing the gradient by the field,

W = ε0
2

∫

V
~E2dV = ε0

2

∫

V
udV , (2.51)

introducing the energy density,

u ≡ ε0
2
~E2 . (2.52)

Example 18 (Electrostatic energy of a charged spherical layer): As an
example we calculate the electrostatic energy of a spherical shell of radius R
uniformly charged with the total charge Q. Using the formula (2.48) we obtain,

W =
1

2

∫
%ΦdV =

1

2

∫
Q

4πR2
δ(r−R)ΦR2 sin θdθdφdr =

Q

2
Φ(R) =

Q

2

1

4πε0

Q

R
=

Q2

8πε0

1

R
.

Alternatively, we calculate by the formula (2.51),

W =
ε0

2

∫
R3

~E2dV =
ε0

2

∫
r≥R

(
1

4πε0

Q

R2

)2

R2 sin θdθdφdr =
Q2

8πε0

∫ ∞
R

1

R2
dr =

Q2

8πε0

1

R
.

1. Comparing the expressions for the electrostatic energy (2.47) and (2.51) 4 we
perceive an inconsistency, since the second only allows positive energies, while
the former allows positive and negative energies, for example, in the case of two
charges with opposed signs aiming to attract each other.

In fact, both equations are correct, but they describe slightly different situations.
Equation (2.47) does not take into account of the work necessary to create these

4Or equivalently (2.48), which also can not be negative.
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elementary point charges in the first place. In fact, equation (2.51) indicates
that the energy of a point charge diverges,

W =
ε0

2

1

(4πε0)2

∫

R3

( e
r2

)2

r2 sin θdrdθdφ =
e2

8πε0

∫ ∞

0

1

r2
r2 sin θdrdθdφ→∞ .

The equation (2.51) is more complete in the sense that it gives the total energy
stored in the charge configuration, but the (2.47) is more appropriate when
working with point charges, because we then prefer to ignore the part needed
for the construction of the electrons. Anyway, we do not know how to create or
dismount electrons.

The inconsistency enters the derivation, when we make the transition between
the Eqs. (2.47) and (2.48). In the first equation, Φ(ri) represents the potential
due to all the other charges except qi, while in the second Φ(r) is the total
potential. For continuous distributions there is no difference, since the amount
of charge at any mathematical point r is negligible, and its contribution to the
potential is zero.

In practice, the divergence does not appear because, when we use Eq. (2.51),
generally we consider smooth distributions of charges and not point-like charges.

2. The energy is stored in the entire electrostatic field, that is, we need to integrate
over the entire space R3.

3. The superposition principle is not valid for electrostatic energy, since it is
quadratic in the fields,

∫
(~E1 + ~E2)2dV 6=

∫
(~E2

1 + ~E2
2 )dV .

2.4.3 Dielectrics and conductors

In an insulating material, such as rubber or glass, all electrons are attached to in-
dividual atoms. They can be displaced inside the atom by an external electric field,
which creates a polarization of the atom. But they do not move away from the atom.
In contrast, in a conducting material, such that a metal, one or more electrons per
atom can move freely.

What are the characteristics of an ideal conductor?

1. ~E = 0 inside a conductor. The electric field inside a conductor must vanish,
otherwise there would be forces on the charges working to rearrange them until
the forces (and the motion of charges) compensate. In the presence of an exter-
nal electric field, the charges arrange themselves in such a way as to generate
their own field designed to compensate the external field.

2. % = 0 inside a conductor. Since there is no electric field, Gauß’ law prevents
residual charges in the interior, since % = ∇ · ~E/ε0.

3. All residual charge is on the surface, simply because it can not be inside.

4. Conductor as an equipotential. As there is no electric field, Stokes’ law

prevents different potentials because Φ(b)− Φ(a) = −
∫ b

a
~E · dr = 0.
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5. ~E is perpendicular to the surface near the surface. Otherwise, the electric
field components parallel to the surface would create forces to rearrange the
residual charges until the parallel components disappear. Consequently, electric
field lines always meet a conductor orthogonally to the surface ~E⊥∂V .

2.4.4 Induction of charges (influence)

When we place a charge in front of a neutral conductor we measure an attraction force.
The reason is that free charges of the conductor with opposite sign are attracted, while
charges with the same sign are repelled 5. Now, since the charges with opposite sign
are closer to the charge in front than those with the same sign, the attractive force
will dominate the repulsive force (see Fig. 2.12 left).

Figure 2.12: Electrostatic induction.

The electric field inside a conductor must vanish, but this only holds for the con-
ductor’s bulk material and not necessarily for dielectric impurities or cavities enclosed
by the conductor. For example, in the case where there is a charge +q inside a en-
closed cavity [see Fig. 2.12(right)], the electric field inside the cavity is clearly nonzero.
However, since it must vanish within the conductor, Gauß’ law requires that within
a volume enclosed by a Gaussian surface, the total charge must be zero. Choosing
this Gaussian surface very close to the cavity, we find that a surface charge must have
formed at the edges of the cavity, compensating for the charge +q inside the cavity.
This charge can only come from the outer surface, which is now charged with the
opposite charge, as well. In this way the charge +q becomes visible from the outside
of the conductor.

The electric field inside a cavity without charges enclosed by a conductor must
be zero, because without charges, the field lines could only traverse the cavity. How-
ever, the entrance and exit points between the cavity and the conductor are on the
same potential, and have no surface charge. This is the principle of Faraday’s cage,
where people inside a conductive cage are shielded and thus protected from electrical
phenomena like lightning discharges.

The migration of free excess charges in conductors to the surface is also called
skin effect: The potential inside the metal the same everywhere, and the electric field
disappears ~E = 0.

Example 19 (Conductors with enclosed cavities): Two cavities with radii
a and b are excavated from a neutral conducting sphere of radius R. In the
center of each cavity there be charges, qa and qb, respectively.

5That is, the charges in the conductor rearrange to compensate for the electric field created by
the charge in front until the total field inside the conductor has vanished.
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� The charges on the surfaces of the cavities σa and σb must be organized
such as to shield the charges qa,b in order to prevent the formation of an
electric field inside the conductor. If the charges are at the centers of the
spheres we simply obtain, σa = qa

4πa2
and σb = qb

4πb2
. The charges used

for shielding are missing from the conductor and must be compensated for
by charges of opposite sign. The only place where these opposite charges
can accumulate is the outer surface of the conductor. Thus, we have the
surface charge σR = −qa−qb

4πR2 .

� The field outside the driver is consequently, ~E = qa+qb
4πε0

r
r3

, where r is the
point of observation with respect to the center of the conductor.

� Inside each cavity the electric field is determined by Gauß’ law, ~E =
qa,b
4πε0

r
r3

,
where r is the observation point respect to the center of the cavity. Note
that the surface charge σa,b does not influence the field.

� Since the charges qa,b do not feel external fields, they are not subject to
forces.

� Putting a third charge qc near the conductor, the charge distribution σR
would change in order to compensate the field within the conductor. Thus,
the other quantities determined in (a)-(d) would not change. The conduc-
tor effectively decouples all processes occurring on disconnected surfaces.

2.4.5 Electrostatic pressure

What is the force exerted by an applied electric field ~Eext on a charged conductive
surface? We know that the surface charge causes a discontinuity of the electric field,
so that we need to calculate the force on a surface element dS as the average of the
forces acting from above and from below,

dF = dS
σ

2
(~Etop + ~Ebottom) = ~PdS , (2.53)

where ~P is the electrostatic pressure (see Fig. 2.13).

Figure 2.13: Electrostatic pressure exerted by a field ~Eext on a charged surface element.

In the case of a thin surface, we have,

~Etop = ~Eext +
σ

2ε0
n̂ , ~Ebottom = ~Eext −

σ

2ε0
n̂ , (2.54)

such that the pressure is,
~P = σ~Eext . (2.55)

In the case of a charged surface of a massive conductor without external field,

~Eoutside =
σ

ε0
n̂ , ~Einside = 0 , (2.56)
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such that the pressure is,

~P =
σ

2

σ

2ε0
n̂ =

ε0

2
E2

outsiden̂ . (2.57)

That is, even without external field a charged conductor suffers a force trying to push
it into the field created by itself, regardless of the sign of the charge. It is interesting
to note that this force goes with the square of σ and of ~Eoutside.

2.4.6 Exercises

2.4.6.1 Ex: Motion of two charges

Two particles with masses m1 and m2 and charges Q1 > 0 and Q2 > 0 are placed at
a mutual distance d0 and can move freely in space.
a. What will happen to the particles qualitatively? Which relation holds at all times
for the velocities v1 and v2 of the two particles?
b. Calculate the velocities of the two particles as a function of their distance and
plot the functions v1(d), respectively v2(d) (phase space diagrams). What are the
velocities reached in the limit d→∞?

2.4.6.2 Ex: Paul trap

We consider four parallel wires oriented along the z-direction and forming a quadrupo-
lar configuration in the xy-plane, as shown in the figure. The wires are charged with
±q per unit of length l. Calculate the electrical potential as a function of x and y in
the center between the wires and expand around x = 0 and y = 0 (|x|, |y| � a) up to
second order. What is the shape of the potential at this position? Do you think it is
possible to trap a charged particle in this potential?

2.4.6.3 Ex: Energy of the electron

Supposing that the charge is homogeneously distributed over a sphere, calculate the
classical electron radius.

2.4.6.4 Ex: Radius of the electron

a. Try to calculate the electrostatic energy of the field of an electron via,

EF =

∫

R3

ε0

2
~E2(r) d3r

What problem appears in the calculation of the radial part of the integral
∫
dr, if the

lower limit of integration goes to r0 → 0?
b. This problem is known as self-energy divergence. It is possible to work around
this problem, leaving the limits out and choosing the classic electron radius r0 as the
integration limit. The energy EF of the electric field is then identified with half the
energy E = 1

2mec
2 of the electron rest mass me. Calculate the classic electron radius!

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_EnergiaEletrica01.pdf
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2.4.6.5 Ex: Electrostatic energy

a. Write the potential energy of a charge q in an external field ~E = −~∇Φ?
b. What is the value of the electrostatic energy of N point charges?
c. What is the value of the energy of a charge distribution in the electric field ~E(r)?

d. What are the boundary conditions for the ~E-field on a conductor’s surface?
e. Draw the electric field of a point charge q located in front of a metallic plane. What
is the induced charge? What is the value of the force on the charge q?

2.4.6.6 Ex: Electrostatic energy

What is the electrostatic energy of
a. four equal charges Q located at the corners of a tetrahedron with the edge length
d?
b. a dielectric sphere with radius R homogeneously charged with the charge Q? To
do this, calculate the electric field inside and outside the sphere using Gauß’ law.

2.4.6.7 Ex: Electrostatic energy

a. Eight point charges q are placed in the corners of a cube with the edge length l.
Calculate the electrostatic energy of this configuration.
b. A balloon with radius R is charged homogeneously with the charge Q. What is the
value of electrostatic energy? What is the force required to inflate the balloon even
more, neglecting the elastic force of the balloon?

2.4.6.8 Ex: Charge separation

Two conducting neutral spheres are in contact and attached to insulating rods on a
large wooden table. A positively charged stick is brought close to the surface of one
of the spheres on the side opposite the point of contact with the other sphere.
a. Describe the charges induced in the two conductive spheres and discuss the charge
distribution in both.
b. The two spheres are separated and then the charged stick is taken away. Then,
the spheres are separated by a great distance. Discuss the charge distributions on the
spheres after they are separated.

2.5 Treatment of boundary conditions and the unique-
ness theorem

In practice, the solution of an electrostatic problem, that is, the resolution of the
Poisson equation, can be hampered by boundary conditions. For example, charges in
front of conducting surfaces induce a redistribution of charges in the conductor which
modifies the electric field. The field is unequivocally determined by the charge and
the boundary conditions. In this section we will discuss the method of image charges,
which is a heuristic model, and the mathematical treatment of boundary conditions.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_EnergiaEletrica04.pdf
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2.5.1 The method of images charges

One way to simulate boundary conditions is to ’invent’ imaginary charges and dis-
tribute them in a way that the total field automatically satisfies these boundary
conditions. This is usually only helpful when the boundary conditions exhibit a high
degree of symmetry. This is the method of the so-called image charges.

The simplest case is that of the point charge Q at a distance d in front of a
conductive and grounded plane. By induction the charge will cause a redistribution
of charges on the surface of the conductor in such a way, that the field lines cross
the surface of the conductor at right angles. But the same boundary conditions can
be satisfied by replacing the conductive plane with a second imaginary charge with
opposite sign at the position of the image of the first charge regarding the plane
as a mirror. From the point of view of the electric field the two configurations are
equivalent, but the field is much easier to calculate for a charge and its image using
Coulomb’s law. See Excs. 2.5.6.1, 2.5.6.2, 2.5.6.3, 2.5.6.4, and 2.5.6.5.

Example 20 (Induced surface charge): In the case of the point charge in
front of a conducting plane, which is the simplest case imaginable, the boundary
conditions are,

Φ(x, y, 0) = 0 , Φ(|r| � d) = 0 ,

the potential is,

Φ(r) =
1

4πε0

(
Q√

x2 + y2 + (z − d)2
+

−Q√
x2 + y2 + (z + d)2

)
,

and the field is,

~E = −∇Φ =
−Q
4πε0

(
−1√

x2 + y2 + (z − d)2
3 (êz − r) +

1√
x2 + y2 + (z + d)2

3 (êz + r)

)
.

Figure 2.14: Point charge in front of a conductive plane.

We can now calculate the charge distribution on the surface. Gauß’ law says,∫
box

~E · dS =
Q

ε0
=

1

ε0

∫
%(r)dV =

1

ε0

∫
σ(x, y)δ(z)dV =

1

ε0

∫
σ(x, y)dA .

Therefore, on the surface,

êz · ~E(x, y, z = 0) =
σ(x, y)

ε0
.
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Resolving by the charge density,

σ(x, y) = ε0êz · ~E(x, y, z = 0) =
−Q
4π

2√
x2 + y2 + d2

3 .

Also, we can verify that the total surface charge is, Qs = −Q.

2.5.2 Formal solution of the electrostatic problem

The solution of the Laplace equation will, in general, depend on boundary conditions
imposed by the geometry of the system. For example, a charge in free space will gen-
erate another field than a charge above a conductive surface. The two most common
boundary conditions are named after Dirichlet and von Neumann. The Dirichlet con-
dition fixes the value of the potential on a geometry of surfaces enclosing a volume,
Φ|∂V = Φ0, while the von Neumann condition fixes the value of the potential gradient,

∇Φ|∂V = ~E0. Let us discuss these conditions in the following.
Using the following four relationships,

(i) ∇2 1
4π|r−r′| = −δ(r− r′) (2.58)

(ii) ∇ · (φF) = φ(∇ · F) + (∇φ) · F

(iii)

∫

V
∇ · FdV ′ =

∫

∂V

F·dS′

(iv) ∇2Φ = − %
ε0
,

we now solve the Poisson equation,

Φ(r) =

∫

V
Φ(r′)δ(r− r′)dV ′ = −1

4π

∫

V
Φ(r′)︸ ︷︷ ︸
φ

∇ ·
(
∇ 1
|r−r′|

)

︸ ︷︷ ︸
F

dV ′ with (i) (2.59)

= 1
4π

∫

V
∇Φ(r′)︸ ︷︷ ︸

F

· ∇ 1
|r−r′|︸ ︷︷ ︸
φ

dV ′ − 1
4π

∫

V
∇ ·
(

Φ(r′)∇ 1
|r−r′|

)
dV ′ with (ii)

= − 1
4π

∫

V

1
|r−r′|∇ · ∇Φ(r′)dV ′ + 1

4π

∫

V
∇ ·
(

1
|r−r′|∇Φ(r′)

)
dV ′ − 1

4π

∫

V
∇ ·
(

Φ(r′)∇ 1
|r−r′|

)
dV ′ .

Finally, using relations (iii and iv), we obtain the final result,

Φ(r) = 1
4πε0

∫

V

%(r′)
|r−r′|dV

′ + 1
4π

∮

∂V

(
Φ(r′)∇′ 1

|r−r′| − 1
|r−r′|∇′Φ(r′)

)
· dS′ , (2.60)

which is an integral version of the Poisson equation. For volumes going to infinity,
where the potential disappears, the surface integrals can be neglected, and we get the
familiar form of Coulomb’s law. For finite volumes, boundary conditions on surfaces
can dramatically influence the potential.

Example 21 (Consistency of Green’s relationship): Obviously, by impos-
ing boundary conditions that coincide with equipotential surfaces of the field
created by the charge distribution, the surface terms vanish. Choosing as an
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example a point charge placed at the origin, %(r′) = Qδ3(r′), and inserting its
potential,

Φ(r = Rêr) =
Q

4πε0

1

R
=

Q

4πε0

1

|r− r′|

∣∣∣∣
r∈∂V

. (2.61)

in the relationship (2.60), we find that the surface integrals cancel out.

Figure 2.15: Illustration of boundary conditions.

The surface term can be interpreted in terms of a surface charge density, because
we know that the normal electric field is discontinuous when crossing a charged sur-
face 6:

σ(r′)
ε0

= −∇′Φ(r′) · n̂ . (2.62)

We consider the example of a charge distribution, %(r′), surrounded by a surface
on which the potential is zero, Φ(r′)|∂V′ = 0, such that the first surface term of the
relation (2.60) fades away. Inserting the expression (2.62) in the second surface term,
the relation becomes,

Φ(r) =
1

4πε0

∫

V

%(r′)

|r− a| +
1

4πε0

∮

∂V

σ(r′)

|r− r′|dS
′ . (2.63)

The interpretation of this modified Coulomb law is, that the charge induces a density
distribution of surface charges σ within the conducting plane which modifies the
electric potential, such that the boundary condition is satisfied.

2.5.3 Green’s Function

The function 1
4π|r−r′| not the only one to satisfy the condition (2.58)(i). In fact, there

is an entire class of functions called Green functions defined by,

∇2G(r, r′) ≡ −δ(r− r′) . (2.64)

6We can derive this considering a thin disk located within the x-y plane and homogeneously
charged with the charge density σ0,

Φ(zêz) =
1

4πε0

∫
disco

σ(r′)

|zêz − r′|dA
′ =

σ0

2ε0

∫ R

0

1√
r′2 + z2

r′dr′ =
σ0

2ε0
[
√
R2 + z2 − z] ,

and therefore,

Ez = −dΦ(zêz)

dz
= − σ0

2ε0

(
z√

R2 + z2
− 1

)
z�R−→ σ0

2ε0
.
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Obviously, for these functions the formula derived in (2.59) will be generalized,

Φ(r) = 1
ε0

∫

V
%(r′)G(r, r′)dV ′ +

∮

∂V
(Φ(r′)∇G(r, r′)−G(r, r′)∇Φ(r′)) · dS′ .

(2.65)
The advantage of the Green function is, that we have the freedom to add any function
F ,

G(r, r′) =
1

4π|r− r′| + F (r, r′) (2.66)

satisfying the Laplace equation,

∇2F (r, r′) = 0 , (2.67)

and the Green function (2.66) will still satisfy the definition (2.64). In particular, we
can choose the function F in a way to eliminate one of the two surface integrals in
Eq. (2.65) and to obtain an expression only involving Dirichlet’s or von Neumann’s
boundary conditions.

2.5.4 Poisson equation with Dirichlet’s boundary conditions

The first uniqueness theorem proclaims,

The solution of the Poisson (or Laplace) equation in a volume V is uniquely
determined, if Φ is specified on the surface of the volume ∂V.

To prove this theorem, let us specify that the potential adopts the (not necessarily
constant) value Φ0 on the surface and consider two possible solutions of the Laplace
equation, Φ1 and Φ2. The difference Φ3 ≡ Φ1−Φ2 disappears on the surface, Φ3|∂V =
0, and must also satisfy the Laplace equation: ∇2Φ3 = 0. Now, since the Laplace
equation does not allow local maxima or minima 7, Φ3 must be zero throughout space
(see Fig. 2.16 left).

Figure 2.16: Illustration of the uniqueness theorems.

We consider as an example a finite volume V without charges, % = 0, surrounded
by a conducting border ∂V maintained at a fixed potential, Φ(r ∈ ∂V) = Φ0 = const.
This is a typical situation realized, for example, in conductive materials such as metals.
Therefore, ∆Φ = 0 within the volume. A possible trivial solution of the Laplace
equation is, Φ(r) = Φ0. The uniqueness theorem now tells us that this is the unique
solution.

To implement this theorem we choose the following boundary conditions,

GD(r, r′∈∂V) = 0 , (2.68)

7For in a hypothetical maximum (minimum) we would have ∇2Φ3 < 0 (> 0).
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such that the relationship (2.64) becomes,

Φ(r) = 1
ε0

∫

V
%(r′)GD(r, r′)dV ′ +

∮

∂V
Φ(r′)∇′GD(r, r′) · dS′ . (2.69)

Do the Excs. 2.5.6.7, 2.5.6.8, 2.5.6.9, and 2.5.6.10.

2.5.5 Poisson equation with von Neumann’s boundary condi-
tions

The second uniqueness theorem proclaims,

In a volume V surrounded by conductors and containing a specified charge
density %, the electric field is uniquely determined by the total charge of
each conductor.

To prove this theorem, we will consider a sample of conductors i each one carrying
the charge Qi. Assuming that there are two solutions for the electric field between
the conductors, ~E1 and ~E2, each of these fields must satisfy, ∇ · ~E1 = ∇ · ~E2 = Qi. The
difference ~E3 ≡ ~E1 − ~E2 must also satisfy Gauss’ law ∇ · ~E3 = 0. Hence, ~E3 must be
vanish throughout the space (see Fig. 2.16 right) 8.

In the case of von Neumann boundary conditions we choose,

∇′GN(r, r′∈∂V) = − n̂
S , (2.70)

because we must satisfy the definition (2.60),

−1 =

∫

V
∇′2GN(r, r′)dV ′ =

∮

∂V
∇′GN(r, r′) · dS =

∮

∂V

−n̂
S · dS (2.71)

such that,

Φ(r) = 1
ε0

∫

V
%(r′)GN(r, r′)dV ′ − 1

A

∮

∂V
Φ(r′)dA′ −

∮

∂V
GN(r, r′)∇′Φ(r′) · dS′ .

(2.72)
The first surface term is simply the average of the potential over the area of the
surface.

2.5.6 Exercises

2.5.6.1 Ex: Mirror charge

A long, thin wire is suspended along the y-direction at a distance z = d parallel to a
grounded metal plate located in the z = 0-plane. The surface of the wire carries the
charge Q/l per unit length.
a. Draw a scheme of the electric field in the semi-space z > 0. Help: Use the principle
of image charges!
b. Calculate the profile of the electric field near the surface of the plate.

8We present here a slightly simplified argumentation. See [42] for a more complete proof.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_CargaImagem01.pdf
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c. What is the surface density σ(x, y) of charges on the plate surface.
d. What is the charge induced in the plate per unit length in y-direction?
Comment: A similar problem occurs for conductors on printed circuits. The metal
plate corresponds to the copper coating on the backside of the circuit board.

2.5.6.2 Ex: Mirror charge

Consider the scheme, illustrated in the figure, of a point charge +q in front of a corner
of a grounded wall.
a. Determine the positions and values of the image charges.
b. Calculate the electrostatic potential Φ(r) in the upper right quadrant.

Figure 2.17: Mirror charge.

2.5.6.3 Ex: Mirror charge

Inside a grounded hollow metallic sphere with the inner radius a be a charge +Q at
the position r1 = (0, 0, z1). Determine the charge Q′ and the position r2 of an image
charge with which it is possible to describe the potential Φ(r) of the original charge
distribution using only the system consisting of the charge and the image charge.
Determine Φ(r).
Help: The position r2 and the charge Q′ are not unambiguously determined. Choose
r1 = (0, 0, z1) and z2/a = a/z1.

z
x

z

q'

q

z

2

1

Figure 2.18: Mirror charge.
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2.5.6.4 Ex: Mirror charge

A conductive surface in the (x, y)-plane has a protrusion in the form of a semi-sphere
with radius R. The center of the sphere is in the plane and at the origin of the
coordinates. On the symmetry axis êz at a distance d > R from the plane there is a
point charge Q. Determine with the image charge method the potential Φ(r) and the
force F on the charge Q.
a. To make the surface of the semisphere an equipotential surface (Φ ≡ 0) we need a
mirror charge Q1 on the z-axis at a distance z1 from the origin. Determine Q1 and
z1.
b. For the (x, y)-plane to become an equipotential surface as well, we need two more
image charges Q2 and Q3. Determine the value and position of these charges.
c. With the values and positions of the charges determine: The electrostatic potential
Φ(r) at an arbitrary point r above the conductive surface, the force F on the charge
Q and its direction (repulsive or attractive).

+q

R

z

d

Figure 2.19: Mirror charge.

2.5.6.5 Ex: Mirror charge

Consider a hollow conducting sphere with radius R whose center is at the origin. At
the position with the vector a (|a| > R) be a point charge q.
a. The sphere is grounded (that is, Φ = 0 at the edge of the hollow sphere). Calculate
the potential outside the sphere using the image charge method.
b. Calculate the charge induced on the surface of the sphere.
c. What changes when the sphere is not grounded, but neutral?

2.5.6.6 Ex: Point charges in front of a conductor

Consider a point charge Q located at a distance d in front of an infinitely extended
conductive plane.
a. Find the parametrization %(r) of the volume charge distribution for the charge and
its image.
b. Calculate the potential from the distribution %(r).
c. Calculate the electric field from the distribution %(r).
d. Calculate the surface charge distribution σ(ρ) induced in the conductor using
Gauss’ law.
e. Calculate the potential Φ(z) along the z-axis from Coulomb’s law using the surface
charge distribution σ(ρ).
f. Compare the result obtained in (e) with the potential produced by the image charge

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_CargaImagem04.pdf
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calculated in (b).

Help::
∫

1√
u2+a2

3
1√

u2+b2
udu = 1

a2−b2

√
u2+b2

u2+a2

Figure 2.20: Mirror charge.

2.5.6.7 Ex: Dirichlet boundary conditions by the Green method

Here we want to analyze the problem of a potential in the semi-space defined by z ≥ 0
with Dirichlet boundary conditions in the z = 0-plane and at infinity.
a. Determine the corresponding Greens function.
b. The potential has in the z = 0-plane within a circle of radius a the fixed value Φ0.
Outside this circle and on the same plane the potential is Φ = 0. Derive the integral
expression for the potential at a point in the upper semi-space with the cylindrical
coordinates (ρ, φ, z).
c. Now show that the potential along an axis perpendicularly traversing the center of
the circle is given by Φ(z) = Φ0(1− z/

√
a2 + z2).

Figure 2.21: Green’s function.

2.5.6.8 Ex: Conductor plates with mirror charges by the Green method

We consider two flat conductive plates (infinitely extended) with the mutual distance
L. Exactly in the middle between the plates there is a point charge +q. Use the
method of an infinite series of mirror images to calculate the potential between the
plates and the force on a plate.

2.5.6.9 Ex: Hollow sphere by the Green method

We consider an infinitely thin conductive hollow sphere with radius a. In spherical
coordinates, the potential on the surface of the sphere is given by Φ(a, θ, φ) = Φ0 cos θ.
a. Calculate, using the Green function for the sphere, the potential and the field inside

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_CondicaoGreen01.pdf
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the sphere on the z-axis.
b. Show that Φ(r, θ, φ) = Φ0(r/a) cos θ is the solution for the interior of the sphere

and that ~E(r) = −(Φ0/a)êz.

2.5.6.10 Ex: Unambiguity of the solution of the contour problem

Show that with the Dirichlet boundary condition Φ(r) = Φ0(r)|∈∂V or the von Neu-

mann boundary condition ∂Φ
∂n

∣∣
∂V

= − σ
ε0

within the region of the volume V the

potential Φ is unambiguously determined by the Poisson equation ∆Φ = − 1
ε0
ρ(r)and

a constant.

2.6 Solution of the Laplace equation in situations
of high symmetry

The Poisson (or Laplace) equation is a second order partial differential equation,
which depends on three spatial coordinates. Many situations are characterized by
symmetries, which allow us to disregard some spatial dimensions and dramatically
simplify the mathematical problem. In the following, we will discuss situations of
Cartesian, cylindrical and spherical symmetry.

2.6.1 Variable separation in Cartesian coordinates

In situations where the symmetry of the problem suggests a separation of the Carte-
sian variables, we can make the ansatz,

Φ(r) = X(x)Y (y)Z(z) . (2.73)

In Cartesian coordinates the Laplace equation is written,

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
Φ = 0 . (2.74)

Inserting the ansatz into the Laplace equation and dividing by Φ,

1

X

∂2X

∂x2
+

1

Y

∂2Y

∂y2
+

1

Z

∂2Z

∂z2
= 0 . (2.75)

The three terms are functions of different variables and must therefore be constant
independently and separately,

1

X

∂2X

∂x2
= C1 ,

1

Y

∂2Y

∂y2
= C2 ,

1

Z

∂2Z

∂z2
= C3 = −C1 − C2 . (2.76)

The advantage of this procedure is that, the differential equations for the three
spatial coordinates being decoupled, we can be solve them separately. In the best case,
the field is homogeneous in one of the coordinates, which reduces the dimensionality
of the problem.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_CondicaoGreen04.pdf
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Example 22 (Field of a grounded board): For example, to calculate the
field of a plate held at a fixed potential Φ0 and being infinitely extended in the
x-y-plane, we can let X ′(x) = Y ′(y) = 0 and solve the equation,

∂2Z

∂z2
= 0 , (2.77)

which gives, Φ(r) = Z(z) = Cz + Φ0 and ~E = Cêz. The constants C and Φ0

must be specified by additional boundary conditions. See Exc. 2.6.4.1.

2.6.2 Variable separation in cylindrical coordinates

In situations where the symmetry of the problem suggests a possible separation of
cylindrical variables, we can try the ansatz,

Φ(r) = R(r)F (φ)Z(z) . (2.78)

In cylindrical coordinates the Laplace equation is written,

[
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2

∂2

∂φ2
+

∂2

∂z2

]
Φ = 0 . (2.79)

Inserting the ansatz into the Laplace equation and dividing by Φ,

1

Rρ

∂

∂ρ

(
ρ
∂R

∂ρ

)
+

1

F

∂2F

∂φ2
+

1

Z

∂2Z

∂z2
= 0 . (2.80)

The three terms are functions of different variables and must therefore be constant
separately,

1

Rρ

∂

∂ρ

(
ρ
∂R

∂ρ

)
= C1 ,

1

F

∂2F

∂φ2
= C2 ,

1

Z

∂2Z

∂z2
= C3 = −C1−C2 . (2.81)

Example 23 (Field of a straight wire): Many geometries have cylindrical
symmetry, such that the equations in θ and z become trivial. For example, to
calculate the field of a straight and infinite wire maintained at a fixed potential,
it is enough to solve a radial differential equation,

∂

∂ρ

(
ρ
∂R

∂ρ

)
= 0 ,

which gives, Φ(r) = R(ρ) = C ln ρ + Φ0 and ~E = Cêρ/ρ. The constants C and

Φ0 must be specified by additional boundary conditions.

2.6.3 Variable separation in spherical coordinates

In situations where the symmetry of the problem suggests a possible separation of
the spherical variables, we can try the make ansatz,

Φ(r) = R(r)T (θ)F (φ) . (2.82)
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In spherical coordinates the Laplace equation is written,
[

1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

]
Φ = 0 . (2.83)

Inserting the ansatz into the Laplace equation and dividing by Φ,

1

R

∂

∂r

(
r2 ∂R

∂r

)
+

1

T sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
+

1

Fr2 sin2 θ

∂2F

∂φ2
= 0 . (2.84)

The three terms are functions of different variables and must therefore be constant
separately,

1

R

∂

∂r

(
r2 ∂R

∂r

)
= C1 ,

1

T sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
= `(`+ 1) (2.85)

1

Fr2 sin2 θ

∂2F

∂φ2
= m = −C1 − `(`+ 1) .

Example 24 (Sphere with fixed potential): Many geometries have spherical
symmetry, such that the equations in θ and φ become trivial. For example, to
calculate the field of a sphere held at a fixed potential, we only have to solve a
radial differential equation,

1

R

∂

∂r

(
r2 ∂R

∂r

)
= 0 ,

which gives, Φ(r) = R(r) = −C/r + Φ0 and ~E = Cêr/r
2. The constants C and

Φ0 must be specified by additional boundary conditions.

In case of only azimuthal symmetry, we have m = 0 and C1 = −`(` + 1). The
solutions of the radial equation are simple,

R(r) = A`r
` +

B`
r`+1

. (2.86)

The solutions of the angular equation are called Legendre polynomials,

T (θ) = P`(cos θ) . (2.87)

They can be derived from the Rodrigues formula,

P`(z) =
1

2``!

(
d

dz

)`
(z2 − 1)` . (2.88)

The first polynomials are,

P0(z) = 1 , P1(z) = z , P2(z) = 1
2 (3z2 − 1) , P3(z) = 1

2 (5z3 − 3z) . (2.89)

All in all we get,

Φ(r) =

∞∑

`=0

(
A`r

` +
B`
r`+1

)
P`(cos θ) . (2.90)
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Example 25 (Charged spherical layer): In this example we consider a spher-
ical shell carrying a surface charge described by σ(θ). The regions r ≤ R and
r ≥ R are treated separately. The ansatz (2.90) can not diverge, neither within
the sphere where we must let B` = 0, nor outside the sphere where we have to
let A` = 0. On the surface even the potential has to be continuous, such that

0 = [Φ≥ − Φ≤]r=R =

∞∑
`=0

Bl
R`+1

P`(cos θ)−
∞∑
`=0

A`R
`P`(cos θ) ,

resulting in B` = A`R
2`+1. On the other hand, the electric field is discontinuous,

−σ(θ)

ε0
=

[
∂Φ≥
∂r
− ∂Φ≤

∂r

]
r=R

=

∞∑
`=0

(2`+ 1)A`R
`−1P`(cos θ) .

The coefficients are,

A` =
1

2ε0R`−1

∫ π

0

σ(θ)P`(cos θ) sin θdθ ,

which can be verified from the orthogonality relation,∫ 1

−1

P`(z)P`′(z)dz =
2δ`,`′

2`+ 1
.

Particularly for the case σ(θ) = σ0 cos θ = σ0P1(cos θ) we obtain,

A` =
σ0

2ε0R`−1

∫ π

0

P1(z)Pl(z)dz =
σ0

2ε0R`−1

2

2`+ 1
δ`,1 =

σ0

3ε0
δ`,1 .

Finally,

Φ(r) =

{
σ0
3ε0

r cos θ = σ0
3ε0

r · êz for r ≤ R
σ0R

3

3ε0

1
r2

cos θ = σ0R
3

3ε0

r·êz
r3

for r ≥ R
.

Figure 2.22: Distortion of a homogeneous field by a metallic sphere.

2.6.4 Exercises

2.6.4.1 Ex: Variable separation

Calculate the potential within an infinite rectangular waveguide in the z-direction by
solving the Laplace equation using the variable separation method.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_SeparacaoVariaveis01.pdf
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2.6.4.2 Ex: Field of a sphere with a hole

On the surface of a hollow sphere of radius R, from which a cap defined by the opening
angle θ = α was cut out at the north pole, there is a homogeneously distributed surface
charge density Q/4πR2.
a. Show that the potential within the volume of the sphere can be written in the form,

Φ(r, θ, φ) =
Q

2

∞∑

`=0

1

2`+ 1
[P`+1(cosα)− P`−1(cosα)]

r`

R`+1
P`(cos θ)

where for ` = 0 we have to let P`−1(cosα) = −1. What is the shape of the potential
outside the hollow sphere?
b. Determine the absolute value and the direction of the electric field at the origin.
c. What potential do we get for α→ 0?
Help: Use the following relation for the surface charge density:

− σ
ε0

=

[
∂Φ>
∂r
− ∂Φ<

∂r

]

r=R

,

where the indices < resp. > hold for regions inside resp. outside the sphere. For the
integration, the following recursion relation is useful,

Pl(x) =
1

2`+ 1

(
dP`+1(x)

dx
− dP`−1(x)

dx

)

that holds for ` > 0.

2.7 Multipolar expansion

The basic idea of multipolar expansion is the approximate description of the poten-
tial generated by an arbitrary distribution of charges localized within a volume V.
The larger the distance between the observation point and the charge distribution in
comparison to the extent of the volume V, the more the potential looks like that of a
point charge. The smaller the distance, the more terms (multipole moments) must be
taken into account, Φ(r) =

∑
k Φk(r). High multipolar orders decay faster (like r−k)

with the distance between the observation point and the volume where the charge is
concentrated.

We have already seen how to do the Taylor expansion of scalar fields in the formula
(1.17) 9. Here, we want to expand in terms of r−1. We start by expanding the function,

1

|r− r′| =
1

r

∞∑

`=0

(
r′

r

)`
P`(cos θ′) , (2.91)

9Using the following property of the Legendre polynomials,

1√
1 + η(η − 2z)

=
∑
`

η`P`(z) ,

where the left side is called the generating function of the polynomials.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_SeparacaoVariaveis02.pdf
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where θ′ is the angle between r and r′. Inserting the expansion into Coulomb’s law
(2.35),

Φ(r) =
1

4πε0

∫
%(r′)

|r− r′|d
3r′ =

1

4πε0

∞∑

`=0

1

r`+1

∫
%(r′)r′`P`(cos θ′)d3r′ . (2.92)

Example 26 (Multipolar expansion by Legendre polynomials): To discuss
the multipolar expansion of the function 1

|r−r′| we chose the axis r̂ as the sym-
metry axis, as shown in Fig. 2.23, because in this coordinate system the function
has azimuthal symmetry in the variable r′. Therefore, we can apply the solution
of the Laplace equation in spherical coordinates derived above,

Φ(r′) =

∞∑
`=0

(
A`r

′` +
B`
r′`+1

)
P`(cos θ′) .

We consider two cases: In a first case in which r′ < r, for the solution Φ(r′) to
converge, we need to guarantee B` = 0 such that,

1

|r− r′| =

∞∑
`=0

A`(r)r
′`P`(cos θ′) .

In the second case in which case r′ > r, we need to ensure A` = 0, such that,

1

|r− r′| =

∞∑
`=0

B`(r)

r′`+1
P`(cos θ′) ,

The coefficients A`(r) and B`(r) can not depend on r′. Let us now have a closer
look at this second case and rename the variables r↔ r′:

1

|r′ − r| =

∞∑
`=0

B`(r
′)

r`+1
P`(cos θ) .

Comparing this to the first case and using θ = −θ′ we find,

A`(r)r
`+1 =

B`(r
′)

r′`
= const = C .

Hence,

1

|r− r′| =

∞∑
`=0

C
r′`

r`+1
P`(cos θ′) .

The constant C can be calibrated considering a particular case, for example
r ‖ r′ and r � r′. In this case, since P`(1) = 1, the multipolar expansion,

1

|r− r′| =
1

|r − r′| =

∞∑
`=0

C
r′`

r`+1
,

is nothing more than a Taylor expansion around the point r − r′ ' r.

2.7.1 The monopole

For n = 0 the contribution of the monopole moment Q to the potential is,

Φ0(r) =
Q

4πε0

1

r
where Q =

∫

V
d3r′ %(r′) (2.93)

is just the electric charge.
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Figure 2.23: In the coordinate system r̂ = êz the function |r−r′|−1 has azimuthal symmetry.

2.7.2 The dipole

For n = 1 the contribution of the electric dipole moment d to the potential follows
immediately from formula (2.91),

Φ1(r) = 1
4πε0

1
r2

∫
%(r′)r′P1(cos θ′)d3r′

= 1
4πε0

1
r3

∫
%(r′)rr′ cos θ′d3r′ = 1

4πε0
r
r3 ·

∫
%(r′)r′d3r′ .

We obtain,

Φ1(r) =
1

4πε0

∑

k

dk
xk
r3

where d =

∫

V
d3r′ r′%(r′) . (2.94)

2.7.3 The quadrupole

For n = 2 the contribution of the electric quadrupole moment qi,j to the potential
follows immediately from the formula(2.91),

Φ2(r) = 1
4πε0

1
r3

∫
%(r′)r′2P2(cos θ′)d3r′ = 1

4πε0
1
r3

∫
%(r′)r′2 3 cos2 θ′−1

2 d3r′

= 1
4πε0

1
2r5

∫
%(r′)(3(r · r′)2 − r2r′2)d3r′

= 1
4πε0

1
2r5

∑

k,m

∫
%(r′)(3xkx

′
kxmx

′
m − xkxmr′2δk,m)d3r′ .

We obtain,

Φ2(r) =
1

4πε0

1

2

∑

k,m

qk,m
xkxm
r5

where qk,m =

∫

V
d3r′ (3x′kx

′
m − r′2δk,m)%(r′) .

(2.95)

Example 27 (Multipole moments of a dipole): As an example, we consider
the simplest dipole, which consists of two charges e and −e separated by a fixed
distance a, which we choose parallel to the z-axis. The monopolar moment is,

Q =

∫
d3r′ [eδ(a

2
êz − r′)− eδ(a

2
êz + r′)] = 0 ,
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as expected. The dipole moment is,

d =

∫
d3r′ r′[eδ(a

2
êz − r′)− eδ(a

2
êz + r′)] = ea

0

0

1

 ,

and the quadrupolar moment is,

qk,m =

∫
d3r′ (3x′kx

′
m − r′2δkm)[eδ(a

2
êz − r′)− eδ(a

2
êz + r′)]

=
ea2

4

−1 0 0

0 −1 0

0 0 2

− ea2

4

−1 0 0

0 −1 0

0 0 2

 = 0 .

See the Excs. 2.7.5.1 to 2.7.5.10.

Example 28 (The electric dipole): The gradient of the potential of a dipole
is,

~E1 = −∇ r · d
4πε0r3

=
−1

4πε0
êx

∂

∂x

xdx + ydy + zdz
(x2 + y2 + z2)3/2

+ ...

=
−1

4πε0
êx
dx(x2 + y2 + z2)3/2 − (xdx + ydy + zdz)3x(x2 + y2 + z2)1/2

(x2 + y2 + z2)3
+ ...

=
−1

4πε0
êx
dxr

2 − r · d3x

r5
+ ... =

1

4πε0

3(êr · d)êr − d

r3
.

2.7.4 Expansion into Cartesian coordinates

The multipolar expansion can also be done in Cartesian coordinates by a Taylor
series of the Green function 10. To take this into account, we evaluate the function
G(r, r′) = G(r− r′) around the distance r− r′ ' r,

G(r− r′) =
∑

k

1

k!
(r′ · ∇)kG(r) = G(r) +

∑

k=1

x′k
∂

∂xk
G(r) +

1

2!

(
3∑

k=1

x′k
∂

∂xk

)2

G(r) + ...

(2.96)

= G(r) +
∑

k=1

x′k
∂

∂xk
G(r) +

1

2!

3∑

k,m=1

x′kx
′
m

∂2

∂xk∂xm
G(r) + ...

= G(r) +
∑

k=1

x′k
∂

∂xk
G(r) +

1

6

3∑

k,m=1

(3x′kx
′
m − r′2δk,m)

∂2

∂xk∂xm
G(r) + ...

The last transformation is valid if the function G satisfies the Laplace equation,
∇2G = 0.

10We can imagine the Green function as the potential created by a point-charge distribution,
%(r′) = Qδ(r − a), since Φ(r) =

∫
G(r − r′)%(r′)dV ′ = QG(r′ − a). That is, the multipolar terms

come into play due to a small stretching of the charge distribution around the point r′ = a
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Figure 2.24: Taylor expansion of the Green function around the point r− r′ ' r.

Example 29 (Cartesian multipolar expansion): As an example, we expand
the Coulomb potential, G(r− r′) = 1

|r−r′| . The first derivatives,

∂

∂xk

1

|r− r′| =
xk − x′k
|r− r′|3 ,

and the second derivatives,

∂2

∂xk∂xm

1

|r− r′| =
3(xk − x′k)2 − (r− r′)2δk,m

|r− r′|5 ,

allow us to calculate,

1

|r− r′| =
1

r
+

r · r′

r3
+

1

6

3∑
k,m=1

3xkxm − r2δk,m
r5

(3x′kx
′
m − r′2δk,m) .

The octupolar term of the multipole expansion of the Coulomb potential is,

1

3!
(r′·∇)3 1

r′
=

1

6

3∑
k,m,n=1

x′kx
′
mx
′
n
−15xkxmxn + 3r′′(xkδmn + xmδkn + xnδmk)

r7
.

Inserting this into Coulomb’s Law,

Φ(r) =
1

4πε0

∫
%(r′)

|r− r′|dV
′ =

1

4πε0

1

r
Q+

r

r3
· d +

1

6

3∑
k,m=1

3xkxm − r2δk,m
r5

qk,m + ...

 ,

with the definitions of the multipole moments.

2.7.5 Exercises

2.7.5.1 Ex: Multipoles

A point charge +2Q is at the position (0, 0, a) and another charge +1Q at the posi-
tion (0, 0,−a). Calculate a. The monopolar, b. the dipolar, and c. the quadrupolar
contribution of the multipolar expansion.

2.7.5.2 Ex: Di- and quadrupolar momenta of spherical charge distribu-
tions

Do spherically symmetrical load distributions have dipole or quadrupolar moments?
Justify!

2.7.5.3 Ex: Electric dipole

An electrical dipole consists of two charges of the value q = 1.5 nC distant by a = 6µm.
a. What is the dipole moment?
b. Calculate the dipole potential along the êz axis of symmetry and in the xy-plane.
c. The dipole is in an 1100 N/C electric field. What is the difference in potential
energies comparing parallel and antiparallel orientations of the dipole.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar03.pdf
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2.7.5.4 Ex: Electric dipole

An electric dipole with the moment d is at the position r. At the origin of the
coordinate system there is a point charge e.
a. Calculate the potential energy of the dipole.
b. Calculate the force acting on the dipole.
c. Calculate the force acting on the charge. Is Newton’s axiom of mechanics valid:
’actio = reactio’?

2.7.5.5 Ex: Electric dipole in a field

What is the force acting on an electric dipole d = ea·êr at a point r being aligned along
the field lines of an external field produced by a sphere with radius R homogeneously
charged with a charge Q?

R

-e
e

Q
d

r

Figure 2.25: Electric dipole in a field.

2.7.5.6 Ex: Electric dipole in a field

Consider a molecule that consists of two rigidly bound masses m1 = m2 = 10−25 kg
at a distance of a = 10−12 m and with charges +e resp. −e.
a. Calculate the electric dipole moment d = d · êx of this charge distribution.
b. Now the molecule is put into rotation by a homogeneous electric field ~E = êz ·
100 V/m. Calculate the rotation speed of the molecule as a function of the angle
between the dipole moment and the electric field.
Help: The sum of the kinetic and electrostatic energies is conserved during the
rotation.

2.7.5.7 Ex: Dipolar field in two dimensions

Consider two infinitely long parallel conductors with distance d carrying the linear
charge density +λ resp.−λ (charge±Q per length l of the conductor). Using the Gauß
theorem, first calculate the electric field and the electric potential of one conductor.
Then calculate the potential of both conductors by overlapping the individual poten-
tials as a function of the distance r and the angle α (see Fig. 2.26). Note: Choose
as integration volume a cylinder with length l and radius r along the symmetry axis
around the wire. Determine the asymptotic behavior for r � d/2 and for r � d/2.
To do this, do a Taylor expansion of the expression using: ln 1+ε

1−ε ≈ −2ε + O(ε3).
Write the result as a function of the dipole moment p, where p = |p| = λd is positive
and indicates the direction of the dipole moment vector showing from the positive
conductor to the negative.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar07.pdf
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Figure 2.26: Dipolar field.

2.7.5.8 Ex: Dipolar and quadrupolar fields

Let us consider a system of three point charges aligned to the z-axis. At the positions
z = ±a we have charges +Q, at the position z = 0 the charge −2Q.
a. Determine the charge distribution in terms of the δ-function in Cartesian coordi-
nates.
b. Calculate the electrostatic potential Φ(r) of this charge distribution and approx-
imate for long distances |r| � a. (Help: Write the denominators that appear as

1
|r±a| = 1

r
1√
1+x

with x ≡ a2±2a·r
r2 and expand up to second order in a.)

c. Calculate the monopolar moment and the Cartesian components of the dipolar
moment and the quadrupolar tensor.
d. Calculate the monopolar, dipolar, and quadrupolar potentials and show that the
results coincides with the expansion (b).
e. Now rotate the coordinate system around the x-axis by an angle of 45◦. What are
the new values for multipolar moments? (Help: The quadrupolar tensor is trans-

formed with the rotation matrix λ as q′il = λilqlmλ
†
mj).

2.7.5.9 Ex: Multipoles

The two charge distributions shown in the graph are given.
a. Calculate for both cases first the electrical potential Φ for the distances r = 2a,
r = 10a, and r = 100a for the angles α = 0◦, α = 45◦, and α = 90◦, respectively.
b. The results must now be compared with those of the quadrupolar expansion. What
are the monopolar, dipolar and quadrupolar moments for these two geometries? Cal-
culate the monopolar, dipolar and quadrupolar contributions of the electrical potential
for the same positions as above. Compare these values with those calculated exactly
and identify the dominant contributions.

2.7.5.10 Ex: Multipoles

Four point charges +e and −e are located at the Cartesian coordinates (x, y, z) =
(0, d, 0), (0,−d, 0), (0, 0, d), (0, 0,−d) and four other charges−e at the points (−d, 0, 0),
(−d2 , 0, 0), and (d, 0, 0). Calculate the monopolar moment and the Cartesian compo-
nents of the dipolar and quadrupolar moment of this charge distribution.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar11.pdf
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Figure 2.27: Multipoles.

2.7.5.11 Ex: Multipolar moments of a charge distribution

An ideal hollow sphere with radius R0 has the surface charge density σ(r, θ, φ) =
σ0 cos θ with σ0 =const. Calculate:
a. The multipolar moments of this charge distribution.
b. The electrostatic potential outside the sphere.

2.7.5.12 Ex: Multipolar moment of an atomic nucleus

A simple model of a deformed atomic nucleus is a body homogeneously charged with
the full charge Ze and being delimited by the quadrupolar surface R(θ) = R0(a(β) +
βY20(θ)). We now assume that the absolute value of the deformation parameter β is
very small with respect to 1. For the average radius it is R0 = 1.2 A1/3 [fm], where
A is the number of nucleons present.
a. Visualize the shape of the nucleus.
b. Determine a(β) up to second order in β from the request, that the core volume is
always V = 4πR3

0/3.
c. Calculate the multipolar moments Qlm up to the octupolar term and up to the
linear terms in β. Are there any multipolar moments that zero exactly?
d. Calculate also the electrostatic potential also up to linear terms in β.

2.7.5.13 Ex: Dipole-dipole interaction

a. Consider an electric dipole with dipole moment d. Show that the electric field of
the dipole is given by:

~E(r = rêr) = − 1

4πε0

d− 3êr(êr · d)

r3
.

You may use the expression for a dipole potential.
b. Use this result to calculate the interaction energy U12 of two equal dipoles located

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar12.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar13.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar14.pdf
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at a distance d from one another for the dipole configurations shown in the scheme.
Help: To calculate the interaction energy U12(a) between the two dipoles we con-

Hausaufgabe 4 (Dipol-Dipol Wechselwirkung)

1. Gegeben Sei ein elektrischer Dipol mit dem Dipolmoment ~d. Zeigen Sie, dass das
elektrische Feld des Dipols gegeben ist durch :

~E(~r = rêr) = − 1

4πǫ0

~d− 3êr(~dêr))

r3
. (10)

Hierzu dürfen Sie den Ausdruck für das Potenzial eines Dipols verwenden.

2. Nützen Sie dieses Ergebnis, um die Wechselwirkungsenergie U12 zweier gleicher
Dipole, die sich im Abstand d voneinander befinden, für folgende Anordnung der
Dipole zu berechnen: Hinweis: Um die Wechselwirkungsenergie U12(~a) zwischen

d d

d d
d d

d d

1 1

1 1

2 2

2 2a a

a a

(i) (ii) (iii) (iv)

den beiden Dipolen zu berechnen, betrachten wir die Energie des Dipols 1 im elek-
trischen Feld des Dipols 2. Dann gilt: U12(~a) = −~d1 ~E2. In welchen Anordnungen
ziehen sich die Dipole an, in welchen stossen sie sich ab?

3. Ein aktuelles Forschungsgebiet beschäftigt sich mit kalten dipolaren Molekülen. In
Tübingen wird z.B. an kalten RbLi-Molekülen geforscht, welche ein permanentes
elektrisches Dipolmoment von dRbLi = 4.3 Debye besitzen. Wie groß muss die Dichte
der Atome n sein, wobei n = a−3 gilt, damit die Dipolwechselwirkung U0 mindestens
so groß ist wie die thermische Energie der Moleküle. Ultrakalte Moleküle besitzen
typischerweise eine Temperatur von 10−6 K.

Lösung
Das Potenzial eines Dipols lautet

Φ(~r) =
1

4πǫ0

~d~r

r3
. (11)

Das elektrische Feld ist gegeben durch ~E = −~∇Φ Mit Ableiten ergibt sich:

−~∇Φ =
−1

4πǫ0

[
(dx, dy, dz)

r3
− 3

2

~d · ~r
r5

(2x, 2y, 2z)

]
= (12)

=
−1

4πǫ0

[
~d

r3
− 3

~d~r

r5
~r

]
=

−1

4πǫ0

[
~d

r3
− 3

~̂er
r3
êr

]
= (13)

=
−1

4πǫ0

~d− 3(~d · êr) · êr
r3

(14)

Figure 2.28: Dipole-dipole interaction.

sider the energy of dipole 1 in the electric field of dipole 2. So, U12(a) = −d1
~E2. In

which configurations do the dipoles attract, in which do they repel each other?
c. A current research area deals with cold dipolar molecules, for example, RbLi
molecules having a permanent dipole electrical moment of dRbLi = 4.3 Debye. What
should be the atomic density n, where n = a−3, in order to obtain a dipolar interac-
tion U0 at least as large as the thermal energy of the molecules? Ultra-cold molecular
gases typically have a temperature around 10−6 K.

2.7.5.14 Ex: • Photoelectric effect

During the process described by the photoelectric effect, ultraviolet light can be used
to electrically charge a piece of metal.
a. If this light strikes a bar of conductive material electrons, and are ejected with
sufficient energy to escape from the surface of the metal, after how much time will
the metal have accumulated a charge of +1.5 nC if 1.0 · 106 electrons are ejected per
second?
b. If 1.3 eV is required to eject an electron from the surface, what is the power of the
light beam? (Consider the process to be 100% efficient.)

2.7.5.15 Ex: Polonium and the use of the Green function

The radioactive metal Polonium (Po), discovered by Marie and Pierre Curie in 1898,
crystallizes in a simple cubic lattice (each atom has six neighbors on a regular grid).
The nucleus contains 84 protons and the diameter of the atom is approximately 3 ·
10−8 cm. Calculate the distribution of the potential within a primitive cell of a Po
crystal traversed by a constant current. Suppose the following model for the crystal:
Atomic nuclei (radius ∼ 9 ·10−13 cm) are at positions x′λµν = (λa+a/2, µa+a/2, νa+
a/2) for λ, µν = 0,±1,±2, ..., and will be treated as point charges. The electronic
shell of a Po atom is represented by charges induced in a grounded conducting cube
of size a, in the middle of which is located the positively charged nucleus inducing
these charges. Proceed as follows:
a. Start showing that,

G(r, r′) = 32
πa

∞∑

l,m,n=1

1
l2+m2+n2 sin lπx

a sin lπx′

a sin mπy
a sin mπy′

a sin nπz
a sin nπz′

a ,

is the Green function for the Dirichlet contour problem of a cube with edge length a.
b. Calculate the potential in the atom at the position (a/2, a/2, a/2), where we assume

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar15.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_TuebH9.pdf
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for the interior of the cube a charge ρ(x′, y′, z′) = qδ(x′ − a/2)δ(y′ − a/2)δ(z′ − a/2)
and that the potential on the six surfaces of the cube adopts the following values:
Φ(r′) = 0 on the surface x′ = 0, Φ(r′) = V0 on the surface x′ = a, and Φ(r′) = V0x

′/a
on the other 4 surfaces y′ = 0, y′ = a, z′ = 0, z′ = a.
c. Reformulate the term describing the contribution of the surface to the potential
using that for 0 < x < π holds: 1 = (4/π)(sinx+ (1/3) sin 3x+ (1/5) sin 5x+ ...) and
x = 2(sinx− (1/2) sin 2x+ (1/3) sin 3x− (1/4) sin 4x+ ...).

2.7.5.16 Ex: Electrostatic potential of a hollow sphere via Green function

On the surface of a hollow sphere with radius b without charge there be a certain
potential V (θ, φ) = V0[P2(cos θ) + αP3(cos θ)]. Calculate the electrostatic potential
Φ(r) inside the sphere.
Help: Green’s function for the interior space between two concentric spheres with
radii a and b (a < b) is,

G(r, r′) =

∞∑

l=0

4π

2l + 1

[
1−

(a
b

)2l+1
] [
rl< −

a2l+1

rl+1
<

] [
1

rl+1
>

− rl>
b2l+1

] +l∑

m=−l

Ylm(Ω)Y ∗lm(Ω′) .

where r< ≡ min(|r|, |r′|) and r> ≡ max(|r|, |r′|). We also know, Yl0(θ, φ) =
√

(2l + 1)/4πPl(cos θ).

2.8 Further reading

D.J. Griffiths, Introduction to Electrodynamics [ISBN]

D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics [ISBN]

H.M. Nussenzveig, Curso de F́ısica Básica: Eletromagnetismo (Volume 3) [ISBN]

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_TuebK3.pdf
http://isbnsearch.org/isbn/978-1-108-42041-9
http://isbnsearch.org/isbn/978-0-471-21643-8
http://isbnsearch.org/isbn/978-8-521-20801-3
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Chapter 3

Electrical properties of matter

There are many types of materials, such as solids, liquids, gases, metals, wood or glass,
all of which respond differently to applied electric fields. However, most materials can
at least roughly be classified into two categories: In materials called dielectrics (or
insulators) the electrons are strongly bound to the atoms, while in metals there are
free electrons. Some materials, such as semiconductors, have particular properties,
which do not fit into these categories.

Under the influence of electric (or magnetic) forces the electrons can be displaced
within a macroscopic body, thus producing a polarization, when the electrons are
bound, or a current, when the electrons are free.

3.1 Polarization of dielectrics

Let us first discuss dielectrics. The elementary blocks (molecules) of dielectric ma-
terials can react in various ways to applied electric fields, For example, they can be
insensitive to electric fields or behave like permanent dipoles. Permanent dipoles exist
independently of the application of an external field, but generally (without exter-
nal field) they have random and disorderly orientations. Under the influence of an
external field the dipoles will try to reorient themselves, which is called orientation
polarization.

It is also possible that a material does not have intrinsic dipole moments, but
develops dipole moments under the action of an external field. In this case we speak
of induced dipoles. Induced dipoles are formed in the presence of a field displacing
bound positive and negative charges in molecules against each other, thus producing
a translation polarization.

3.1.1 Energy of permanent dipoles

Polar molecules exhibit permanent electric moments. Water is an example or salt
Na+Cl−. The reason is that halogens, which have a much higher electro-affinity than
alkalines, and try to steal electrons from their partner and monopolize the electronic
cloud.

The potential energy of a dipole depends on its orientation with respect to the
electric field. Using the parametrization %(r′) = Q[δ3(r′ − a

2 ) − δ3(r′ + a
2 )], we find

93
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for the interaction energy with a homogeneous field given by Φ(r′) = −E0z′,

Hint =

∫
%(r′)Φ(r′)dV = −QE0az = −d · ~E . (3.1)

Hence 1,

Hint = −d · ~E . (3.2)

The energy is minimal when d ‖ ~E .
To calculate the interaction energy between two dipoles d1 and d2 we calculate the

energy of d1 within the field created by d2 (which has been derived in the example 27),

Hint = −d1 · ~E2 = −d1 ·
1

4πε0

3(êr · d2)êr − d2

r3
=

1

4πε0

d1 · d2 − 3(d1 · êr)(d2 · êr)
r3

.

(3.3)

3.1.1.1 Alignment of permanent dipoles

In a homogeneous field the force on an (neutral) electric dipole d = Qa vanishes,

since F = Q~E + (−Q)~E = 0. However, there will be a torque because,

~τ =
a

2
×Q~E +

−a

2
× (−Q)~E = d× ~E . (3.4)

This means that a freely moving molecule will rotate about its mass center, as illus-
trated in Fig. 3.1, until (in the presence of dissipation) it finds the orientation with
the lowest energy. In this orientation the molecule is aligned to the applied field. See
Exc. 3.1.7.1.

Figure 3.1: Torque on a dipole exerted by an electric field.

In a non-homogeneous field, the forces on the charges ±Q do not compensate 2,
F = Q~E+ −Q~E− = Q(a · ∇)~E . Hence,

F = (d · ∇)~E . (3.5)

Placed in front of a conductive surface a dipole feels the forces exerted by the
charge of its own image. In Exc. 3.1.7.2 we calculate the torque exerted by a conduct-
ing surface on a dipole.

1We can also calculate the energy of a dipole in an electric field by the work required to rotate it

away from its rest position, Hint =
∫
~τ · dθ =

∫
d× ~Edθ =

∫ θ
0 dE sin θdθ = −dE cos θ.

2We note that the force that a field exerts on a dipole can be calculated as a gradient of the
interaction energy: F = −∇Hint = ∇(d· ~E) = (d·∇)~E+(~E ·∇)d+(d×∇)× ~E+(~E×∇)×d = (d·∇)~E.
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3.1.2 Induction of dipoles in dielectrics

A priori, neutral non-polar atoms and molecules should not react to applied electric
fields. However, the fact that atoms are composed of positive charge distributions
(concentrated in a heavy nucleus) and negative ones (concentrated in a light-weighed
electron shell), permits a more or less important displacement of these charge distri-
butions with respect to the center-of-mass. Consequently, an electric field polarizes
the atom and induces an electric dipole moment whose magnitude is approximately
proportional to the field,

d = αpol
~E , (3.6)

where the constant αpol is called polarizability.

Example 30 (Polarizability of a primitive atom): In a primitive model we
envision an atom as a point-like nucleus carrying the charge +Q surrounded by
a uniformly charged electron sphere with radius a carrying the inverse charge
−Q. In the presence of an external field ~E the nucleus will be slightly shifted
by a distance ε/2 to one side and the electron sphere by a distance −ε/2 to the
opposite side. The polarized atom is in equilibrium, when the field created by
the induced dipole Edp (calculated in Exc. 2.2.4.5) equalizes the external field,
i.e.,

Edp =
1

4πε0

Qε

a3
= E .

Hence,
αpol

4πε0
=

d

4πε0E
= a3 ≈ 0.15 · 10−30 m3 ,

using for a = aB the Bohr radius. Despite the simplicity of the model, this

results represents a good approximation. A slightly better model is discussed in

Exc. 3.1.7.3.

The values for the atomic polarizability range from αpol/4πε0 = 0.205 · 10−30 m3

for helium to 59.6 · 10−30 m3 for cesium. This shows that it is far more difficult to
polarize atoms with closed electron shells (like noble gases) than atoms with isolated
valence electron (such as alkaline atoms). Molecules may react in a more complicated
way to the applied fields necessitating an interpretation of the polarizability αpol in
terms of a tensor represented by a matrix.

3.1.2.1 Energy of induced dipoles

We now calculate the energy of a polarizable molecule inside an external electric
field. We expect two contributions: The first one is the energy Wind stored in the
field created by the separation of charges under the action of the external field. The
second contribution is the energy Hint due to the interaction of the induced dipole
with the external field.

Wind is calculated by the work spent on separating the charges. Let e be the
valence charge bound to the molecule. The force between this charge and the molecule
is described, in first approximation, by a harmonic oscillator with the spring constant
k. Inside the electric field, the charge feels the force e~E , but at the same time the
force of the ’molecular spring’ goes in the opposite direction. In equilibrium,

−ka + e~E = 0 . (3.7)
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To induce this dipole, the electric field must do the work,

Wind = 1
2ka

2 = 1
2eEa . (3.8)

Defining the induced dipole as dind ≡ Zed, we obtain:

Wind = 1
2di · ~E . (3.9)

Since the energy of a dipole in an external electric field is, Hint = −di · ~E , for the
induced dipole we obtain the total energy,

Htot = Hint +Wind = − 1
2di · ~E . (3.10)

The energy value is less than in the case of a permanent dipole (3.5), since part of
the energy had to be spent on creating the dipole in the first place. Expressing the
dipole moment by the polarizability (3.6),

Htot = −αpol

2
~E2 . (3.11)

3.1.3 Macroscopic polarization

With these results we can now describe, what happens to a dielectric material placed
in an electric field: If the substance consists of neutral atoms (or non-polar molecules),
the field will induce in each particle a small dipole moment pointing in the direction
of the field. If the substance consists of polar molecules, each permanent dipole will
try to orientate itself along the field 3.

Note that both mechanisms produce the same result: a multitude of small dipoles
aligned along the applied field. The sum of the microscopic moments gives rise to a
macroscopic polarization defined by the sum over all dipole moments,

~P =
Nd

V
. (3.12)

In reality, the two types of polarization are not always well separated, and there
are cases where both contribute. Nevertheless, it is usually much easier to rotate a
molecule (rotational energy) than to stretch it (vibrational energy). In some (ferro-
electric) materials it is possible to freeze the polarization.

3.1.4 Electrostatic field on a polarized or dielectric medium

In this section we will describe the electric field inside a polarized medium forgetting
the physical cause of the polarization ~P. The field produced by the polarization
(not the external field) can be calculated by the sum of the fields produced by the
individual dipoles,

Φ(r) =
1

4πε0

∑

k

dk · (r− rk)

|r− rk|3
−→ 1

4πε0

∫

V
dV ′

~P(r′) · (r− r′)

|r− r′|3 , (3.13)

3Note that thermal motion, particularly at high temperatures, competes with this process, such
that the alignment will never be perfect.
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introducing the dipole moment distribution ~P(r′) by dk → ~PdV ′. We can rewrite the
integral in the form,

Φ(r) =
1

4πε0

∫

V
~P(r′) · ∇′ 1

|r− r′|dV
′ =

1

4πε0

[∫

V
∇′ ·

~P(r′)

|r− r′|dV
′ −
∫

V

1

|r− r′|∇
′ ~P(r′)dV ′

]

=
1

4πε0

∮

∂V

~P(r′)

|r− r′|dS
′ − 1

4πε0

∫

V

1

|r− r′|∇
′ · ~P(r′)dV ′ . (3.14)

Defining,

σb ≡ ~P · nS and %b ≡ −∇ · ~P , (3.15)

we obtain

Φ(r) =
1

4πε0

∮

∂V

σb

|r− r′|dS
′ − 1

4πε0

∫

V

%b

|r− r′|dV
′ . (3.16)

The meaning of this result is that the potential (and therefore the field) of a polarized
object is the same as the one produced by a volume distribution %b plus a surface
charge distribution σb. The index b indicates the fact that we consider here ’bound
charges’ (i.e. localized charges). Instead of integrating the field contributions of all in-
dividual infinitesimal dipoles, as in Eq. (3.13), we can try to find these bound charges,
and then calculate the fields they produce, as we already did in the previous chapter.

Figure 3.2: Distortion of polarization.

Example 31 (Microscopic theory of induced dipoles): As an example we
calculate the electric field produced by a homogeneous polarization within a
sphere. While the volume charge is zero (otherwise ~P could not be uniform),
the surface charge is σb = ~P · nS = P cos θ. This charge distribution generates
a potential which, applying the result derived in example 25, we can write,

Φ(r, θ) =

{
P

3ε0
r cos θ = 1

4πε0

d·r
R3 for r ≤ R

P
3ε0

R3

r2
cos θ = 1

4πε0

d·r
r3

for r ≥ R
,

with d = 4π
3
R3 ~P. The potential produces a field, which is uniform within the

sphere,

~E = −∇Φ =

{
− P

3ε0
êz

∂Φ
∂z

= − ~P
3ε0

for r ≤ R
P

3ε0

R3

r2
cos θ = 1

4πε0

3(êr·d)êr−d

r3
for r ≥ R

.
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The physical interpretation of the surface charge produced by a uniform polar-
ization is simply a displacement of all the electrons of the body with respect to the
positively charged nuclei. Since the electrons remain attached to the nuclei, the
volume charge inside the sphere remains neutral. However, the edges of the body
accumulate negative charge on one side and positive charge on the other.

3.1.5 Electric displacement

In the previous section we found that the phenomenon of polarization can be un-
derstood as being due to a volume charge %b = −∇ · ~P inside the dielectric and a
surface charge on the surface of the body σb = ~P ·nS . However, many materials have
dielectric characteristics and at the same time conductive characteristics, which do
not result from a polarization and which we take into account via a distribution of
free charges, %f, the index f indicating ’free charges’.

3.1.5.1 Gauß’ Law in dielectric media

Gauß’s law can now be generalized for arbitrary media,

ε0∇ · ~E = % = %b + %f = −∇ · ~P + %f , (3.17)

where ~E is the total electric field. Defining a new field called the electric displacement,

~D ≡ ε0
~E + ~P , (3.18)

we can now write,
∇ · ~D = %f . (3.19)

The electric displacement is that part of the electric field, which comes only from
free charges (which is the part useful for generating currents). We can also define the
electric susceptibility χε via,

~P = ε0χε~E , (3.20)

or the permittivity ε via,
~D = ε~E = ε0(1 + χε)~E . (3.21)

Note that the rotation of the polarization does not necessarily vanish, since the sus-
ceptibility may depend on position, χε = χε(r),

∇× ~D = ε0(∇× ~E) +∇× ~P = ∇× (ε0χε~E) 6= 0 . (3.22)

Therefore, ~D generally can not be derived from a potential, and Coulomb’s law is not
valid for ~D.

3.1.5.2 Boundary conditions involving dielectrics

The integral version of Gauß’s law,
∮
~D·dS = Qf, allows us to determine the behavior

of the electric displacement near interfaces,

D⊥top −D⊥bottom = σf . (3.23)
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On the other hand, Stokes’ law ∇× ~D = ε0∇× ~E +∇× ~P = ∇× ~P yields,

~D‖top − ~D‖bottom = ~P‖top − ~P‖bottom . (3.24)

This is in contrast to the behavior of the electric ~E field at interfaces described by
Eqs. (2.37) and (2.39).

3.1.6 Electrical susceptibility and permittivity

3.1.6.1 Linear dielectrics

In many materials, as long as the applied electric field is not too strong, the polariza-
tion is proportional to the field, ~P ∝ ~E , that is, the electric susceptibility depends on
the material’s microscopic properties and external factors such as temperature, but
not on the applied field, χε 6= χε(~E). Hence, linear media can be characterized by a
constant,

εr ≡
ε

ε0
, (3.25)

called relative permittivity.
In non-linear media, in contrast, the susceptibility χε(~E) depend on the strength

of the electric field. Often the polarization can be expanded in orders of the electric
field,

~P(~E) = ε(1)~E + ε(2)~E2 + ε(3)~E3 + ... . (3.26)

In anisotropic materials the situation gets more complicated, because the susceptibil-
ity and the permittivity must be understood as tensors,

Pk(~E) =
∑

m

ε
(1)
kmEm +

∑

ml

ε
(2)
kmlEmEl +

∑

mlj

ε
(3)
kmljEmElEj + ... . (3.27)

Example 32 (Microscopic theory of induced dipoles): We know that an
external electric field ~Eext applied to a linear purely dielectric medium generates
a macroscopic polarization proportional to the field,

~P = χεε0
~Eext .

On the other hand, if the material consists of atoms (or non-polar molecules),
the microscopic dipole moment induced in each atom is proportional to the local
field,

dind = αpol
~Eloc .

Here, ~Eloc is the total field due to the applied field ~Eext plus the field ~Eself gen-
erated by the polarization of the other atoms which are around. The question
now is, what is the relationship between the atomic polarizability αpol (charac-
terizing the sample from a microscopic point of view) and the susceptibility χe
(characterizing the sample from a macroscopic point of view)?
To begin with we consider low densities, in which case it is a good approximation
to suppose that the atom does not feel the polarization of its neighbors, that is
~Eloc ' ~Eext. We already noticed in Eq. (3.12) that the polarization is nothing
more than the sum over all the dipole moments induced by the local electric
field, such that, comparing the last two relations, a first trial would be to affirm,

χε =
N

V

αpol

ε0
.
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But for dense gases, there will be a correction, and the local field will be a
superposition of the external field and the field generated by the surrounding
dipoles, ~Eloc = ~Eext + ~Eself. To estimate this field, we imagine a single dipole
located inside a sphere. The polarization of the surrounding medium is modeled
by a surface charge density with the value σb ≡ −P cos θ. The electric field
produced by this charge distribution was calculated in example 31: ~Eself =
~P/3ε0. With this we calculate,

χε =
P

ε0Eext
=

P
ε0(Eloc − Eself)

=
P

ε0( pind
αpol
− P

3ε0
)

=
Nαpol/ε0V

1−Nαpol/3ε0V
. (3.28)

This equation is known as Clausius-Mossotti formula. The difference between
the denominator and 1, called Lorentz-Lorenz shift, comes from the energy dis-
placements of the atoms due to the dipole-dipole interactions. At low densities
we recover the linear relation. In terms of the relative permittivity we can also
write,

αpol

ε0
=

3V

N

εr − 1

εr + 2
.

Figure 3.3: The local field ~Eloc is the sum of the external field ~Eext and the field generated
by the polarization ~Eself.

3.1.7 Exercises

3.1.7.1 Ex: Torque on dipoles

Calculate the torque on a dipole in front of a conducting surface.

3.1.7.2 Ex: Torque on dipoles

Consider the configuration of two dipoles shown in the figure and calculate the recip-
rocal torques.

Figure 3.4: Dipoles.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_DipoloPermanente01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_DipoloPermanente02.pdf
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3.1.7.3 Ex: Polarizability of hydrogen

In quantum mechanics we find for the electronic charge distribution in a hydrogen
atom,

%(r) =
Q

πa3
B

e−2r/aB .

Calculate the polarizability.

3.1.7.4 Ex: Susceptibility

One liter of water is evaporated in 10 m3 of dry air at room temperature T = 300 K.
a. Calculate the dipolar density n of the air. Assume that only the dipolar moments
of the evaporated molecules contribute.
b. Determine the susceptibility χε of the air. Use the relation P = ε0χεE , as well as
Curie’s law for the polarization P.

3.2 Influence of charges and capacitance

We now assume that we have two separate conductors, one carrying the charge +Q
and the other −Q. Since the potential of each conductor is the same at each point of
its body, we can specify a potential difference, called voltage, between them,

U ≡ Φ+ − Φ− = −
∫ (+)

(−)

~E · dl , (3.29)

which does not depend on the distribution of the charges throughout the conductors.
However, we know from Coulomb’s law that the electric field is proportional to the
charge Q and from the above equation, also the voltage. The proportionality factor
is called capacitance,

C ≡ Q

U
. (3.30)

3.2.1 Capacitors and storage of electric energy

A device capable of storing charges is called capacitor.

Example 33 (Plate capacitor): The simplest geometry for a capacitor are
two parallel conducting plates (area S) maintained at a distance d. The surface
charge distribution σ = Q/S produces a field E = σ/ε0 and a potential difference
U = Ed, such that,

C = ε0
S

d
. (3.31)

To charge a capacitor we must bring electrons from the positive side to the negative
side of the capacitor. For a single electron, this requires the work

∆We =

∫ d

0

F · dr = ed|~E| = eU .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_DipoloInduzido01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_DipoloInduzido02.pdf
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For a small amount of charge dq,

∆We =

∫
U dQ =

∫ Q

0

Q

C
dQ =

Q2

2C
=

1

2
CU2 .

Resolve the Excs. 3.2.2.1 to 3.2.2.10.

3.2.1.1 Capacitors with dielectrics

In the presence of a dielectric the capacitance increases, C = εrCvac. Thus, the field
energy also increases by a factor of εr.

We consider a capacitor filled with a linear dielectric and charged with the free
charge %f, which generates a voltage U between the electrodes. We want to know the
work needed to add a little bit more charge δ%f to the volume element dV ,

δW =

∫
U δ%fdV . (3.32)

Now, with Eq. (3.19) we write %f = ∇ · ~D and δ%f = ∇ · δ ~D, such that,

δW =

∫

V
U∇ · δ ~DdV =

∫

∂V
U δ ~D · dS−

∫

V
δ ~D · ∇UdV =

∫

V
δ ~D · ~EdV . (3.33)

For a linear dielectric, ~D = ε~E , such that, ~E · δ ~D = ~Eε · δ~E = 1
2δ(εE

2) = 1
2δ(

~D · ~E),
giving,

δW = 1
2

∫
δ( ~D · ~E)dV . (3.34)

Finally, to charge the capacitor completely,

W =

∫
δW = 1

2

∫
~D · ~E =

∫
udV , (3.35)

with the energy density,

u =
1

2
~E · ~D . (3.36)

Do the Excs. 3.2.2.11 to 3.2.2.18.

Example 34 (Forces on dielectrics): Dielectrics in electric fields are sub-
jected to forces due to the polarization induced in the medium. Let us consider
the example of a plate capacitor inside which we insert a dielectric. In the
scheme shown in Fig. 3.5 the electric field homogeneously traverses the capaci-
tor and also the dielectric body, such that the forces should disappear. On the
other hand, on its edges the dielectric distorts the field, such that forces become
possible.
The easiest way to calculate these forces is via the potential energy gradient,
F = −∇W . If the dielectric body is free to move in x-direction, we have,

F = −dW
dx

= − d

dx

Q2

2C
= − d

dx

CU2

2
.

We use the first expression, in case the charge on the capacitor is kept constant,
and the second, when the voltage on the capacitor is kept constant. Gradually
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inserting the dielectric, a part of the volume of the capacitor will be empty and
another part will be filled with the dielectric medium:

C = Cvac
x

a
+ Cvacεr

a− x
a

.

Keeping the charge constant, we get,

F =
Q2

2C2

dC

dx
= − d

dx

Q2

2(Cvac
x
a

+ Cvacεr
a−x
a

)
=

Q2

2Cvac

−aχε
(a− xχε)2

.

Since the force is negative, the dielectric is drawn into the capacitor.
The situation is different when we keep the voltage constant, for example, by
connecting the capacitor to a battery. In this case we need to use the second
expression. However, we must take into account the work UdQ that the battery
must do to increase the charge on the capacitor in order to maintain the voltage
constant while we increase the capacity via Cvac → C,

dW = −Fdx+ UdQ .

Hence,

F = −dW
dx

+ U
dQ

dx
= −U

2

2

dC

dx
+ U2 dC

dx
=

Q2

2C2

dC

dx
,

and we get the same result as in the case where we kept the charge constant.

Figure 3.5: Force on the dielectric between the plates of a capacitor.

3.2.1.2 Capacitor circuits

For parallel circuits Ctot = C1 + C2, for circuits in series C−1
tot = C−1

1 + C−1
2 . Do the

Excs. 3.2.2.19 to 3.2.2.27.

3.2.2 Exercises

3.2.2.1 Ex: Capacitors

Be given two isolated conductors carrying equal charges but with opposite signs ±Q.
The capacity of this configuration is the ratio between the absolute value of the charge
of one conductor and the absolute value of the potential difference between the two
conductors. Using Gauß’ law calculate the capacity of
a. 2 large parallel plates with area A being at a short distance d;
b. 2 concentric cylindrical conductors (without surfaces at the ends of the cylinders)
with radii ρ1 and ρ2.
c. 2 concentric spherical surfaces with radii r1 and r2.
Help: Choose integration volumes that fits the symmetry of your system.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorGeometria01.pdf
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3.2.2.2 Ex: Capacitance of a mercury drop

The capacity of a spherical drop of mercury with radius R is given by C = 4πε0.
Now, two of these drops merge. What is the capacity of this larger drop?

3.2.2.3 Ex: Charged plates

Consider a thin, very extended metal plate, d2 � A, with area A and thickness d
carrying the charge Q. Calculate the charge distribution (surface charge density) and
the electric field on both sides of the plate neglecting edge effects. How do the charge
distribution and the electric field change, when we have two plates instead of one with
thickness d at a distance l, one being charged with the charge Q and the other with
−Q.

3.2.2.4 Ex: Plate capacitor

A capacitor is made of two flat metal plates with the surfaces 1 m2. What should be
the distance of the plates to give the capacitor a capacity of 1 F? Is it possible to
build such a capacitor?

3.2.2.5 Ex: Cylindrical capacitor

A cylindrical capacitor is made of two infinitesimally thin coaxial cylindrical surfaces
with radii R1 and R2. For simplicity, assume that the cylinders are infinitely extended
in z-direction. The charge per unit length on the inner cylinder is +Q/l, on the outer

cylinder −Q/l. Calculate the electric field ~E(r) as a function of the distance r from
the symmetry axis for r ≤ R1, R1 < r < R2, and r ≥ R2.
Help: Use the symmetry of the problem and Gauß’ law.

3.2.2.6 Ex: Cylindrical capacitor

Two concentric infinitely thin hollow conductive cylinders with radii a and b (a < b)
and length l are charged with charges +q resp. −Q. l is much larger than b, such that
border effects are negligible. For symmetry reasons, the electric field can only have
one radial component.
a. Write down the charge distribution %(r) in cylindrical coordinates (r, φ, z) with the
help of the δ-function.
b. Calculate the electric field ~E(r, φ, z) in the whole space (r < a, a < r < b, b <

r). Use for this the fundamental equations of electrostatics and ∇ · ~E = 1
r
d
dr (eEr).

Alternatively, this part can be resolved using Gauß’ law.
c. Calculate the potential difference |Φ(r = b)−Φ(r = a)| between the two surface of

the cylinders. To do this, calculate the line integral
∫
~E · dr along a suitable path.

d. The capacity C of the device is defined by the absolute value of the ratio between the
charge on one cylinder and the potential difference between the cylinders. Calculate
the capacity of this ’cylindrical capacitor’.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorGeometria02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorGeometria03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorGeometria04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorGeometria05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorGeometria06.pdf
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3.2.2.7 Ex: Spherical capacitor

Consider a homogeneously charged ball with radius R1 and an infinitely thin spherical
homogeneously charged shell with radius R2. The ball has the full charge +Q, the
shell −Q. Calculate the electric field ~E(r) for r ≤ R1, R1 < r < R2 and r ≥ R2.

Help: Use the fact that ~E must be, for symmetry reasons, radially symmetrical, and
depends on the charge density via ∇ · ~E(r) = %(r)/ε0. Also use Gauß’ law.

3.2.2.8 Ex: Thunderstorm

The cloud of a thunderstorm with 17 km2 of total area floats at a height of 900 m
above the Earth’s surface and forms with it a plate capacitor.
a. Calculate the capacity of this plate capacitor (the area to be considered on Earth
is equal to that of the cloud).
b. What is the maximum charge of the thundercloud before the capacitor discharges?
(The discharge electric field in air is 104 V/cm).
c. The capacitor is totally discharged by a lightning, once the critical field strength is
reached. What is the current flowing to Earth if the lightning’s duration is 1 ms?
d. What power does this correspond to? For how long a power station with a power
of 2000 MW needs to work to produce the energy released by lightning?

3.2.2.9 Ex: Spherical capacitor

A spherical capacitor consists of two concentric conducting spheres of radii R1 and
R2, with R1 < R2. The inner sphere has a charge +Q and the outer sphere has a
charge −Q.
a. Calculate the absolute value of the electric field and the energy density as a function
of r, where r is the radial distance from the center of the spheres for any r.
b. Determine the capacitance C of the capacitor.
c. Calculate the energy associated with the electric field integrated over a spherical
shell of radius r, thickness dr, and volume 4πr2dr located between the conductors.
Integrate the obtained expression to find the total energy between the conductors.
Give your answer in terms of the charge Q and the capacitance C.

3.2.2.10 Ex: Lightning rod

The absorption of lightning by a lightning rod can be described by the following model
(outlined in the figure): The (x, y) plane of a Cartesian coordinate system divides a
half space with the conductivity κ (the soil of the Earth, z < 0) from a space with
conductivity 0 (air, z > 0). In the center of the coordinates is an extremely conductive
semispherical electrode connected with the lightning rod of diameter d. Current I can
cross the semisphere and enter the conducting half space. For symmetry reasons, the
current density may only depend on the distance r from the origin of the coordinates
and must be oriented radially: j = jr(r)êr. All of the following questions refer to
points in the conductive semi-space outside the electrode.
a. Calculate the current density j as a function of the current amplitude I and the
distance r from the source. Help: The current flowing from the electrode to the
conducting half space must also exit the semisphere K.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorGeometria07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorGeometria08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorGeometria09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorGeometria10.pdf
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b. Determine the electric field ~E(r).
c. Determine the electrical voltage U(x, s) between two points on the positive x-axis,
having the coordinates x and x+ s, respectively.
d. Determine the voltage Utot for x = d/2 and s → ∞. What ohmic resistance can
be attributed to the conducting half space?

Hausaufgaben (Abgabe: 19.06.2007)

14) Gewitterwolke

5

Eine Gewitterwolke mit 17 km2 Gesamtfläche schwebt in 900 m Höhe über der Erdoberfläche und
bildet mit ihr einen “Plattenkondensator”.

(a) Berechnen Sie die Kapazität dieses Plattenkondensators (die begrenzende Fläche auf der Erde sei
gleich der Wolkenfläche).

(b) Wie groß kann die Ladung der Gewitterwolke werden, bis sich der “Kondensator” entlädt? (Die
Durchschlagsfeldstärke von Luft beträgt 104 V/cm).

(c) Der Kondensator wird, wenn er die kritische Feldstärke erreicht, durch einen Blitz vollständig
entladen. Welcher Strom fließt zur Erde, wenn der Blitz 1 ms dauert?

(d) Welcher Leistung entspricht dies? Wie lange müsste ein Kraftwerk mit 2000 MW Leistung arbei-
ten, um die von Blitz freigesetzte Energie zu produzieren?

15) Blitzableiter

7

Ein Blitzeinschlag in einen Blitzableiter kann durch
folgendes Modell beschrieben werden: Die (x, y)-
Ebene eines kartesischen Koordinatensystems trennt
einen Halbraum mit der elektrischen Leitfähigkeit κ
(Erdreich, z < 0) von einem mit der Leitfähigkeit 0
(Luft, z > 0). Im Koordinatenursprung befindet sich
eine mit dem Blitzableiter verbundene hochleitfähige
halbkugelförmige Elektrode mit Durchmesser d, über
die ein Strom I in den leitfähigen Halbraum hin-
einfließt. Aus Symmetriegründen kann die Strom-
dichte nur vom Abstand r vom Koordinatenursprung
abhängen und muss radial gerichtet sein: ~ = jr(r) r̂ .





κ

I

K

d

z

0 x

Alle folgenden Fragen beziehen sich auf Punkte im leitfähigen Halbraum außerhalb der Elektrode.

(a) Berechnen Sie die Stromdichte ~ als Funktion der Stromstärke I und des jeweiligen Abstands r
vom Ursprung.

Hinweis: Der aus der Elektrode in den leitfähigen Halbraum hineinfließende Strom I fließt durch
die Halbkugelschale K auch wieder hinaus.

(b) Ermitteln Sie das elektrische Feld ~E(~r).

(c) Bestimmen Sie die elektrische Spannung U(x, s) zwischen zwei Punkten auf der positiven x-
Achse, welche die x-Koordinaten x bzw x + s haben.

(d) Geben Sie die Spannung Utot für x = d/2 und s→ ∞ an. Welcher Ohmsche Widerstand kann also
hier dem leitfähigen Halbraum zugeordnet werden?

Figure 3.6:

3.2.2.11 Ex: Plate capacitor

An ideal plate capacitor consists of two parallel plates at a distance d. One of the
plates, defined by the corners (0, 0, 0), (a, 0, 0), (a, b, 0), and (0, b, 0)), be charged with
the charge −Q, the other plate, defined by the corners (0, 0, d), (a, 0, d), (a, b, d) and
(0, b, d), has the charge +Q. A part of the intermediate space (up to the surface be-
tween the points (x, 0, 0), (x, b, 0), (x, b, d), and (x, 0, d)) be filled with a homogeneous
dielectric with the dielectric constant ε; the rest of the space between the plates is
empty. We assume that a and b are very large, such that border effects can be ne-
glected.
a. Calculate the electric field ~E and the dielectric displacement ~D between the plates.
Help: Use ∇× ~E = 0 and ∇ · ~D = %. Use surface charge densities.
b. Calculate the energy of the electrostatic field W of this device.
c. What force F = −dW/dx acts on the dielectric for an infinitesimal displacement
dx?

3.2.2.12 Ex: Spherical capacitor with dielectric

Two concentric conducting spheres with radii a and b (a < b) carry the charges ±Q.
Half of the space between the spheres is filled by a dielectric ε = const.
a. Determine the electric field at all points between the spheres.
b. Calculate the surface charge distribution on the inner sphere.
c. Calculate the polarization charge density induced on the surface of the dielectric
at r = a.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorDieletrico01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorDieletrico02.pdf
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3.2.2.13 Ex: Potential of a charged sphere

A sphere of radius R be in the vacuum. It consists of a material with the dielectricity
constant ε = const and carries in its center the charge q. Calculate the potential in
full space.

3.2.2.14 Ex: Plate capacitor with dielectric

We consider two parallel electrodes with area A and distance d (see figure). Calculate
the force on the upper electrode in the x-direction, once for constant voltage V0 and
once for constant charge Q for the following two cases:
a. The electrodes are inside a dielectric liquid with permittivity ε;
b. a fixed dielectric with permittivity ε is introduced between capacitor plates. In the
residual gap there is no dielectric medium.

Hausaufgabe 4 (Plattenkondensator mit Medium)
Gegeben seien zwei parallele Elektroden mit Fläche A und Abstand d (Abbildung).
Berechnen Sie die Kraft auf die obere Elektrode in x-Richtung, einmal für konstante
Spannung V0 und einmal für konstante Ladung Q in beiden folgenden Fällen:

(a) Die Elektroden befinden sich in einer dielektrischen Flüssigkeit mit Permittivität ǫ.

(b) Eine festes Dielektrikum mit Permittivität ǫ wird zwischen die Kondensatorplatten
eingeführt. Im Restspalt befindet sich kein Medium.

- -
+ +V0 V0

(a) (b)

e

-Q -Q

+Q +Q

e

e
0

x x

⋆ Hausaufgabe 5 (Kondensatorschaltungen)
Berechnen Sie die Gesamtkapazität folgender drei Schaltungen: Lösung

C1 C1
C1

C2 C2

C2

C3 C3

C3

C4 C4

C4

C5

(a) (b) (c)

a) Bei Reihenschaltung werden Kapazitäten reziprok addiert, bei Parallelschaltungen
normal addiert.
Cges =

C1C2

C1+C2
+ C3C4

C3+C4

b) Durch Umzeichnung des Schaltbildes sieht man, dass es sich um zwei in Reihe geschal-
tete Parallelschaltungen der Kondensatoren C1 und C3 bzw. C2 und C4 handelt.
Cges =

(C1+c3)(C2+C4)
(C1+C3)+(C2+C4)

c) Durch Umzeichnung erkennt man, dass die in Reihe geschalteten Kondensatoren C2

und C4 parallel zu C5 und den in Reihe geschalteten Kondensatoren C1 und C3

geschaltet sind.
Cges =

C2C4

C2+C4
+ C5 +

C1C3

C1+C3

Abgabe: Montag, 2.6.2008 um 12h, Kasten im Eingangsbereich D-Bau.
Bitte Namen und Übungsgruppe deutlich auf dem Blatt vermerken!!
http://www.pit.physik.uni-tuebingen.de/Courteille/Uebungen.htm

Figure 3.7: Plate capacitor.

3.2.2.15 Ex: Plate capacitor with dielectric

The plate capacitor shown in the figure has a plate surface of A = 115 cm2 and a
plate distance of d = 1.24 cm. Between the plates we have the potential difference
U0 = 85.5 V produced by a battery. Now, the battery is removed and a dielectric
b = 0.78 cm thick plate with dielectric constant ε = 2.61 is inserted, as shown in the
figure. First calculate
a. capacitance without dielectric and
b. the free charge on the capacitor plates.
c. Now, the dielectric is inserted. Calculate the electric field in the voids and within
the dielectric, as well as
d. the potential difference between the plates.
e. What is the capacitance with dielectric?
f. Now assume that the battery remains connected to the capacitor while the dielectric
is inserted into the space between the plates. Calculate now the capacitance,
g. the charge on the capacitor plates, and
h. the electric field in the void and inside the dielectric.

3.2.2.16 Ex: Plate capacitor with dielectric

Consider a quadratic plate capacitor with edge length l and plate distance d.
a. What is the capacity of the empty capacitor? What is the electrostatic energy
when the plates are charged with the charges kept fixed +Q and −Q?
b. A dielectric with thickness d, width L > l, and dielectric constant ε is now inserted

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorDieletrico03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorDieletrico04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorDieletrico05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorDieletrico06.pdf
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b

d

Q

-Q

�

Figure 3.8: Plate capacitor.

from the side. What is the electrostatic energy as a function of penetration depth x
for 0 < x < l?
c. What is the force acting on the dielectric with function of x for 0 < x < l?

Universität Tübingen SoSe 2008
Klausur I zum Integrierten Kurs Physik II 5.6.2008

Aufgabe 1 (Kondensatorschaltungen)
Berechnen Sie die Gesamtkapazität folgender Schaltung,

P1 P2

P3

C

C C C C

(a) zwischen den Punkten P1 und P3,
(b) zwischen den Punkten P1 und P2.

Aufgabe 2 (Kondensator mit Dielektrikum)
Gegeben sei ein quadr. Plattenkondensator mit Seitenlängen l und Plattenabstand d.

-Q

l

l

d

x

e +Q
l

L

d

(a) Wie groß ist die Kapazität des leeren Kondensators? Wie groß ist die elektrostatische
Energie, wenn sich auf den beiden Platten die Ladungen +Q und −Q befinden?
(b) Von der Seite wird ein Dielektrikum mit Dicke d, Breite l, Länge L > l und Dielek-
trizitätskonstante ǫ in den Kondensator eingeführt. Wie groß ist die elektrostatische
Energie in Abhängigkeit der Einführtiefe x für 0 < x < l?
(c) Welche Kraft wirkt auf das Dielektrikum als Funktion von x für 0 < x < l?

Figure 3.9: Plate capacitor.

3.2.2.17 Ex: Plate capacitor with dielectric

At a plate capacitor consisting of two parallel metal plates of area 0.5 m2 and distant
by d = 10 cm, there be a voltage of U0 = 1000 V.
a. What are the values for the capacitance of the capacity C, the electrical field E
between plates, and the charge surface density σ on the plates?
b. A quarter of the capacitor volume is now filled with a dielectric (ε = 5), as shown
in the diagram. What is now the capacitance Cg?
Help: We may construct an equivalent circuit diagram by inserting imaginary ca-
pacitor plates along equipotential surfaces.

4) Koaxialkabel

8

Ein Koaxialkabel bestehe aus zwei unendlich langen konzentrischen zylin-
derförmigen metallischen Leitern der Radien R1 und R2 und jeweils vernach-
lässigbarer Dicke. Der Raum zwischen den Leitern ist mit einem Isolator mit
relativer Permeabilität µ gefüllt (siehe Skizze).
(a) Beide Leiter führen in gegenläufiger Richtung jeweils den Strom I, wobei die

Stromdichte Zylindersymmetrie aufweist. Berechnen Sie Magnetfeld ~B und
magnetische Erregung ~H als Funktion des Abstandes r von der Mittelachse
des Kabels in den Bereichen r < R1, R1 < r < R2 und r > R2.

2R
2R

1

2

µ

(b) Welche magnetische Feldenergie ist pro Längeneinheit im Kabel gespeichert?

5) Spule und Schleife

8

Betrachtet werde eine Spule mit N = 1000 Windungen, Querschnittfläche A=
2cm2, Länge `= 6cm und ohmschen Widerstand R = 10Ω.
(a) Welche Induktivität L hat die Spule?

(b) Zum Zeitpunkt t = 0 wird Schalter S geschlossen und damit an der Spule
eine Gleichspannung U = 12V angelegt. Zeigen Sie, dass das Magnetfeld
in der Spule danach den zeitlichen Verlauf B(t)=B0[1−exp(−Rt/L)] hat.
Berechnen Sie B0.

NONONONONONONONONONONON
NONONONONONONONONONONON
POPOPOPOPOPOPOPOPOPOP
POPOPOPOPOPOPOPOPOPOP

U

S

Uind

Spule

(c) Welche Spannung Uind(t) wird an einer um die Spule gelegten Induktionsschleife gemessen?
Zeigen Sie, dass der Maximalwert dieser Spannung nur von U0 und N abhängt.

(d) Hängt |Uind| davon ab, wie die Ebene der Induktionsschleife relativ zur Spulenachse orientiert ist?

Hinweise: Nehmen Sie an, dass ~B innerhalb der Spule parallel zu deren Längsachse und homogen ist
und außerhalb der Spule verschwindet.

6) Ein Kondensator

8

An einem Plattenkondensator aus zwei parallelen Metallplatten der Fläche 0.5m2, die
sich im Abstand d = 10cm gegenüberstehen, liegt eine Spannung U0 = 1000V an.
(a) Wie groß sind die Kapazität C des Kondensators, die elektrische Feldstärke E

zwischen den Platten und die Flächenladungsdichte σ auf den Platten?

(b) Ein Viertel des Kondensatorvolumens wird nun mit einem Dielektrikum (ε = 5)
gefüllt, siehe Skizze. Wie groß ist nun die Kapazität C′?

Hinweis: Beachten Sie beim Ersatzschaltbild, dass Kondensatorplatten nur entlang
Äquipotentialflächen eingefügt werden dürfen!

QRQRQQRQRQQRQRQQRQRQQRQRQQRQRQ

SRSSRSSRSSRSSRSSRS

TRTTRTTRT
URUURUURU

d/2

d

ε

7) Geschwindigkeitsfilter

8

Elektronen werden durch eine Beschleunigungsspannung U aus der
Ruhe beschleunigt und gelangen dann in einen Kondensator, in dem
ein homogenes elektrisches Feld von E = 2kV/m sowie ein homo-
genes Magnetfeld von B = 1mT herrschen; ~E, ~B und die Elektron-
Flugrichtung stehen paarweise senkrecht aufeinander. U wird so ein-
gestellt, dass der Strahl im Kondensator nicht abgelenkt wird. B

Quelle
Elektronen−

+−
U

E

e−

(a) Welche Kräfte wirken im Kondensator auf die Elektronen?

(b) In welche Richtung zeigt das Magnetfeld aus der Blickrichtung des Elektronenstrahls, wenn ~E
nach unten gerichtet ist? Begründung!

(c) Welche Geschwindigkeit v haben die Elektronen im Kondensator?
Ersatzlösung: v = 106 m/s.

(d) Welche Beschleunigungsspannung wurde eingestellt?

Hinweis: Elektronen haben Masse me = 9.11×10−31 kg und Ladung Q =−e =−1.619×10−19 C.

Figure 3.10: Plate capacitor.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorDieletrico07.pdf
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3.2.2.18 Ex: Water capacitor

Consider a plate capacitor (plate distance d = 20 cm, plate surface area A = 400 cm2),
which can be half filled with water (dielectric constant εw = 80.3). We apply a voltage
of U = 240 V.
a. Calculate the capacitance of the capacitor for the following cases:
i. No water.
ii. The water is perpendicular to the plates..
iii. The water is parallel to the plates.
b. Calculate the charges on the plates for these three cases.
c. Compare the electric field energy of the cases (i) and (iii). From what source does
the energy difference come from when the capacitor is filled with water?
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Präsenzaufgaben

11) Wasserkondensatoren

Gegeben ist ein Plattenkondensator (Plattenabstand d = 20 cm, Plattenfläche A = 400 cm2), der zur
Hälfte mir Wasser (Dielektrizitätskonstante εw = 80.3) gefüllt werden kann. Es liegt eine Spannung
von U = 240 V an.

2OH

H2O

U

U

U

(i) (ii) (iii)

(a) Berechnen Sie die Kapazität des Kondensators für folgende Fälle:

(i) Ohne Wasser.
(ii) Das Wasser steht senkrecht zu den Platten.

(iii) Das Wasser steht parallel zu den Platten.

(b) Berechnen Sie die Ladungen auf den Kondensatorplatten für die drei Fälle.

(c) Vergleichen Sie die elektrische Feldenergie für die Fälle (i) und (iii). Aus welcher Quelle kommt
die entsprechende Energiedifferenz beim Füllen des Kondensator mit Wasser?

12) Spiegelladungen

Skizzieren Sie die Spiegelladungen und Feldlinienbilder für die rechts gezeigten
Anordnungen von Ladung Q und geerdeten Metallplatten.

Q

13) Poisson-Gleichung

In einer Kugel des Durchmessers 2a sei eine Gesamtladung Q homogen verteilt. Bestimmen Sie das
Potential φ(~r) und die elektrischen Feldstärke ~E(~r) im gesamten Raum durch Lösung der Poisson-
Gleichung ∆φ = −ρ(~r)/ε0.

Hinweis: Der Radialanteil des Laplace-Operators in Kugelkoordinaten ist
1
r2

∂

∂r

(

r2 ∂

∂r

)

.

Figure 3.11: Capacitor.

3.2.2.19 Ex: Capacitor circuit

The capacitance of the capacitors in the schematic circuit are C1 = 10µF, C2 = 5µF
and C3 = 4µF. The voltage is U = 100 V.
a. Calculate the total capacitance.
b. Determine for each capacitor the value of the charge, voltage, and stored energy.

C1

C2

C3U

Figure 3.12: Capacitor.

3.2.2.20 Ex: Capacitor circuit

Calculate the total capacitance of the circuits shown in the figure.
a. between the points P1 and P3,
b. between the points P1 and P2.

3.2.2.21 Ex: Capacitor circuit

Calculate the total capacitance of the circuits shown in the figure.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorDieletrico08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorCircuito01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorCircuito02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorCircuito03.pdf
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Universität Tübingen SoSe 2008
Klausur I zum Integrierten Kurs Physik II 5.6.2008

Aufgabe 1 (Kondensatorschaltungen)
Berechnen Sie die Gesamtkapazität folgender Schaltung,

P1 P2

P3

C

C C C C

(a) zwischen den Punkten P1 und P3,
(b) zwischen den Punkten P1 und P2.

Aufgabe 2 (Kondensator mit Dielektrikum)
Gegeben sei ein quadr. Plattenkondensator mit Seitenlängen l und Plattenabstand d.

-Q

l

l

d

x

e +Q
l

L

d

(a) Wie groß ist die Kapazität des leeren Kondensators? Wie groß ist die elektrostatische
Energie, wenn sich auf den beiden Platten die Ladungen +Q und −Q befinden?
(b) Von der Seite wird ein Dielektrikum mit Dicke d, Breite l, Länge L > l und Dielek-
trizitätskonstante ǫ in den Kondensator eingeführt. Wie groß ist die elektrostatische
Energie in Abhängigkeit der Einführtiefe x für 0 < x < l?
(c) Welche Kraft wirkt auf das Dielektrikum als Funktion von x für 0 < x < l?

Figure 3.13: Capacitor circuit.

Hausaufgabe 4 (Plattenkondensator mit Medium)
Gegeben seien zwei parallele Elektroden mit Fläche A und Abstand d (Abbildung).
Berechnen Sie die Kraft auf die obere Elektrode in x-Richtung, einmal für konstante
Spannung V0 und einmal für konstante Ladung Q in beiden folgenden Fällen:

(a) Die Elektroden befinden sich in einer dielektrischen Flüssigkeit mit Permittivität ǫ.

(b) Eine festes Dielektrikum mit Permittivität ǫ wird zwischen die Kondensatorplatten
eingeführt. Im Restspalt befindet sich kein Medium.

- -
+ +V0 V0

(a) (b)

e

-Q -Q

+Q +Q

e

e
0

x x

⋆ Hausaufgabe 5 (Kondensatorschaltungen)
Berechnen Sie die Gesamtkapazität folgender drei Schaltungen: Lösung

C1 C1
C1

C2 C2

C2

C3 C3

C3

C4 C4

C4

C5

(a) (b) (c)

a) Bei Reihenschaltung werden Kapazitäten reziprok addiert, bei Parallelschaltungen
normal addiert.
Cges =

C1C2

C1+C2
+ C3C4

C3+C4

b) Durch Umzeichnung des Schaltbildes sieht man, dass es sich um zwei in Reihe geschal-
tete Parallelschaltungen der Kondensatoren C1 und C3 bzw. C2 und C4 handelt.
Cges =

(C1+c3)(C2+C4)
(C1+C3)+(C2+C4)

c) Durch Umzeichnung erkennt man, dass die in Reihe geschalteten Kondensatoren C2

und C4 parallel zu C5 und den in Reihe geschalteten Kondensatoren C1 und C3

geschaltet sind.
Cges =

C2C4

C2+C4
+ C5 +

C1C3

C1+C3

Abgabe: Montag, 2.6.2008 um 12h, Kasten im Eingangsbereich D-Bau.
Bitte Namen und Übungsgruppe deutlich auf dem Blatt vermerken!!
http://www.pit.physik.uni-tuebingen.de/Courteille/Uebungen.htm

Figure 3.14: Capacitor circuit.

3.2.2.22 Ex: • Energy in combinations of capacitors

a. Two identical capacitors are connected in parallel. This combination is then con-
nected to the terminals of a battery. How does the total energy stored in the parallel
combination of these two capacitors compare to the total energy stored if only one of
the capacitors were connected to the terminals of the same battery?
b. Two identical discharged capacitors are connected in series. This combination is
then connected to the terminals of a battery. How does the total energy stored in
the in-series combination of these two capacitors compare to the total energy stored
if only one of the capacitors were connected to the terminals of the same battery?

3.2.2.23 Ex: • Plate capacitor

An air-filled plate capacitor consists of plates of 2.0 m2 area separated by 1 mm and
is charged with 100 V.
a. What is the electric field between the plates?
b. What is the electrical energy density between the plates?
c. Determine the total energy by multiplying the response to part (b) with the volume
between the plates.
d. Determine the capacitance of this arrangement.
e. Calculate the total energy using U = 1

2CV
2 and compare your answer with the

result of part (c).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorCircuito04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorCircuito05.pdf
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3.2.2.24 Ex: • Combination of capacitors

A 10.0µF capacitor and a 20.0µF capacitor are connected in parallel to the terminals
of a 6.0 V battery.
a. What is the equivalent capacitance of this combination?
b. What is the potential difference in each capacitor?
c. Determine the charge on each capacitor.
d. Determine the energy stored in each capacitor.

3.2.2.25 Ex: • Infinite series of capacitors

What is the equivalent capacitance (in terms of C, which is the capacitance of one of
the capacitors) of the infinite chain shown in the figure.

C

C

C

C

C

C

C

C ...

Figure 3.15: Capacitor circuit.

3.2.2.26 Ex: • Reconnecting capacitors

A 100 pF capacitor and a 400 pF capacitor are both charged at 2.0 kV. They are
then disconnected from the voltage source and connected together, positive plate to
positive plate and negative plate to negative plate.
a. Determine the resulting potential difference at each capacitor.
b. Determine the dissipated energy when the connection is made.

3.2.2.27 Ex: • Reconnecting capacitors

A 1.2µF capacitor is charged at 30 V. After charging the capacitor is disconnected
from the voltage source and is connected to the terminals of a second capacitor that
had previously been discharged. The final voltage on the 1.2µF capacitor is 10 V.
a. What is the capacitance of the second capacitor?
b. How much energy was dissipated when the connection was made?

3.3 Conduction of current and resistance

To charge a capacitor we need to carry charges to its electrodes. By permitting a
displacement of charges we escape, in this section, for the first time from the premises
of electrostatics and introduce the concept of a current as being due to a movement of
charges within a conductor. For now, let us not raise the question, how this current
will act on other charges or currents, this subject being discussed in the next chapter.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorCircuito06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorCircuito07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorCircuito08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorCircuito09.pdf


112 CHAPTER 3. ELECTRICAL PROPERTIES OF MATTER

3.3.1 Motion of charges in dielectrics and conductors

In electrostatics the electromotive force accelerating a charge Q is the Coulomb force,
F = Q~E . Interpreting the current as the sum of the motions vk of all charges

∑
k
Nk
V Qk

within a volume V , we introduce the current density in a way analogous to the charge
density,

j(r) =
∑

k

NkQk
V vk −→ %(r)vmed(r) , (3.37)

where the average is calculated over a small volume. The flow of charges in and out
of the volume satisfies the continuity equation,

∇ · j + ∂t% = 0 . (3.38)

To interpret this equation we consider a volume V and calculate the flow of charges
through the surface of the volume,

I ≡
∮

∂V
jdS =

∫

V
∇ · jdV =

∫

V
%̇dV = Q̇ . (3.39)

That is, the charges passing through the surface must accumulate within the volume.
The charge flow I is called current.

3.3.2 Ohm’s law, stationary currents in continuous media

In the case of free charges inside a conductor, we empirically observe that the elec-
tromotive force leads to a stationary current. Obviously, this current depends on the
electric field,

j = j(~E) , (3.40)

despising the magnetic force, which is usually weak. Moreover, we find empirically
that the current is often proportional to the field,

j = ς ~E . (3.41)

with the conductivity ς. This observation is called Ohm’s law.
We said earlier that ~E = 0 inside a conductor for electrostatic situations, j = 0.

This remains valid for perfect conductors, ~E = j/ς = 0, even when current is flowing.

3.3.2.1 Microscopic view of conduction

Ohm’s law may seem surprising, since the current arising from charges accelerated by a
potential difference, we would expect that the flow of charges (i.e. the current) should
grow in time as the velocity of the charges increases. But in fact, the accelerated
electrons often collide with the atoms of the conducting material and are decelerated
by the electromotive force F = mea or redirected. Moreover, at finite temperature,
the thermal velocity of the electrons is very high,

vtherm =

√
2kBT

3me
≈ 6700 m/s , (3.42)
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so that the average velocity is constant. The time between two collisions of an electron
can be related to its mean free path λ by,

t =
λ

vtherm
. (3.43)

Now, the average velocity is,

vmed =
1

t

∫ t

0

v(t′)dt′ =
at

2
. (3.44)

Finally, with na molecules per unit volume, each one providing N free electrons, the
current density is,

j = naNQvmed = naNq
t

2me
F = naNQ

λ

2mevtherm
F =

naNQ
2λ

2mevtherm

~E . (3.45)

That is, the conductivity can be estimated as,

ς =
naNQ

2λ

2mevtherm
. (3.46)

The resistivity is

ρ ≡ 1

ς
. (3.47)

We note that the resistivity depends on the temperature, ρ ∝ T 1/2.

Figure 3.16: Microscopic view of the current.

Example 35 (Estimation of the average velocity of electrons in a con-
ductor): Based on Eq. (3.37) we now want to estimate the average propagation
velocity of electrons in a copper wire (radius R = 1 mm) carrying a current
of I = 1 A. With the density of copper of ρm = 8920 kg/m3, its atomic mass
ma = 63.5u and N = 1 valence electron per atom we estimate,

vmed =
I

naNeπR2
=

Iu

maeπR2
' 8.5 cm/h .
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3.3.2.2 Resistors and energy consumption

Let us consider the conductor with the most common geometry: a metallic wire with
the shape of a cylinder with cross section S and length L. Applying an electric field,
we get,

I = j · S = ς ~E · S =
ςS

L
U , (3.48)

where R = l/ςA is called resistance. In this form the Ohm’s law adopts the following
form,

U = RI . (3.49)

Figure 3.17: Concept of resistance.

A consequence of the frequent collisions of the electrons with the atoms is, that
the conductor heats up. The power wasted on a resistance R is,

P = V I = RI2 . (3.50)

3.3.2.3 Resistor circuits

For parallel circuits R−1
tot = R−1

1 +R−1
2 , for circuits in series Rtot = R1 +R2.

3.3.3 Exercises

3.3.3.1 Ex: The α-particle

A beam of α-particles (q = +2e), which move with constant kinetic energy E =
20 MeV, corresponds to a current of I = 0.25µA. The beam is directed perpendicular
to a flat surface.
a. How many α-particles hit the surface in t = 3 s?
b. How many α-particles are at each instant of time within a s = 20 cm long beam
segment?
c. What potential difference does an α-particle have to travel to be accelerated from
rest to an energy of 20 MeV?

3.3.3.2 Ex: Electric power

A potential difference of 120 V powers a heater whose resistance is 1 Ω when it is hot.
a. At what rate does this device transform electricity into heat?
b. What is the electricity consumption bill for t = 5 h of operation with a price for
electricity of S = 5 ct/kWh?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_OhmCurrent01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_OhmCurrent02.pdf
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3.3.3.3 Ex: Ohm’s Law and electric Power

By how many degrees does a copper conductor of 100 m in length and 1.2 mm2 in
diameter heat up, when it is traversed for 1 hour by a current of 6 A? Assume the heat
is not dissipated and use the following data: specific resistivity: ρ = 0.02 Ωmm2/m;
density: ρCu = 8.93 kg/dm3; specific heat capacity: cCu = 389.4 J/kg K.

3.3.3.4 Ex: Continuity equation and conserved quantities

The continuity equation,

ρ̇+∇ · (~vρ) = 0 ,

appears in various areas of physics and describes, for example, the conservation of
matter, charge or probability.
a. Explain, based on Gauß’ law, the relationship between the continuity equation and
charge conservation.
b. Consider a simple mechanical example: A 10 l gas bottle is opened letting gas
escape. Determine with the help of the continuity equation after how many minutes
half of the gas is gone, if the gas exits at a constant velocity of v = 1 m/s and the
outlet valve has a cross-sectional area of A = 10 mm2?

3.3.3.5 Ex: • Drift of electrons in a conducting wire

A gold wire has a circular cross section of 0.1 mm diameter. The ends of this wire are
connected to the terminals of a 1.5 V battery. If the wire length is 7.5 cm, how long
does it take on average for two electrons leaving the negative terminal of the battery
to reach the positive terminal? Consider a resistivity of gold of 2.44 · 10−8 Ωm.

3.4 The electric circuit

Within a (ideal) conductor potential differences vanish everywhere ∆Φ = 0, regardless
of the conductor’s length or shape. In a stationary situations, that is, in the presence
of static electric fields, the free electrons of the conductor self-organize their spatial
distribution (if necessary by creating local charge imbalances) in order to satisfy this
condition. As soon as the condition is satisfied, the movement of charges, necessary
for their spatial reorganization, comes to an end.

To sustain a stationary current we need to recycle the electrons, that is, waste the
electrons accumulated on the side, where the conductor is connected to the positive
potential and provide new electrons on the side, where the conductor is connected
to the negative potential. In other words, we need to close the circuit by an source-
drain device for electrons, called voltage source or current source depending on the
properties of the device.

In addition to the source, there is a wide variety of electronic components capable
of manipulating the potential or the current in different ways, such as resistors, ca-
pacitors, inductors or transistors. In a circuit, these components are interconnected
by conductive wires assumed to be ideal in the sense that they a potential without
losses from one component to another.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_OhmCurrent03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_OhmCurrent04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_OhmCurrent05.pdf
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3.4.1 Kirchhoff’s rules

Electrical circuits can be more complicated and consist of several branches. The mesh
rule, ∑

k

Uk = 0 (3.51)

and the node rule, ∑

k

Ik = 0 , (3.52)

govern the behavior of the potentials and currents in any circuit and serve to analyze
its properties.

Figure 3.18: Illustration of Kirchhoff mesh and node rules.

Example 36 (R-C circuit in series): In addition to the voltage source we
got to know two types of elements which can locally influence the voltage or
the current: the capacitor and the resistor. The simplest imaginable electrical
circuit containing these two components is the R-C circuit shown in Fig. 3.19.
This circuit can be treated by Kirchhoff’s laws,

RU

C

Figure 3.19: Illustration of a R-C-circuit.

0 = UF + UC + UR and IF = IC = IR . (3.53)

Since the current is the same at each point of the circuit, we get the differential
equation,

0 = UF +
Q

C
+RI = UF + 1

C

∫ t

0

Idt′ +RI , (3.54)

which can quickly be solved by imposing the condition that the charge of the
capacitor is initially zero,

I(t) = I0(1− e−t/RC) . (3.55)
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3.4.2 Measuring instruments

Instruments for voltage and current measurement are discussed in the applied under-
graduates courses, and we will not repeat this here.

3.4.3 Exercises

3.4.3.1 Ex: Motor starter issues

The starter of a car runs too slow. The mechanic has to decide which part is defective:
the motor, the power cord, or the battery. According to the manufacturer’s technical
instructions, the internal resistance of the U0 = 12 V battery should not exceed Rbat <
0.02 Ω, resistance of the motor must not exceed Rmot < 0.2 Ω, and the resistance of
the power cord must not exceed Rcab < 0.04 Ω. Examining the starter motor the
mechanic finds a potential difference of 11.4 V at the battery, 3 V in the cable, and a
current of 50 A in the starter circuit. Which element of the starter is defective?

R

U

mot

RkabRbat

0

Figure 3.20: Motor starter circuit.

3.4.3.2 Ex: Solar cell

A solar cell generates a voltage of 0.1 V at a resistive load of 500 Ω, but only a voltage
of 0.15 V at a resistive load of 1000 Ω. Consider the cell as a real voltage source with
an internal resistance.
a. What are the internal resistance and unloaded voltage of the cell?
b. Calculate the efficiencies obtained with the two mentioned loads.

3.4.3.3 Ex: Current and voltage measurement

Circuit (a) shows an arrangement with an amperemeter with internal resistance RA
and a voltmeter with internal resistance RU to measure resistance R. The value of the
resistance follows from R = UV /IR, where UV is the value indicated by the voltmeter
and IR the current through the resistance. A part of the current IA measured by the
amperemeter, however, flows through the voltmeter, such that the ratio UV /IA of the
measured values only indicates an apparent resistance, which we will call R′.
a. How are the true resistance R and the apparent resistance R′ interconnected
through the internal resistance RV voltmeter? How should the internal resistance
of the voltmeter be chosen to guarantee that R′ → R?
b. With the circuit (b) it is also possible to measure a resistance with an amperemeter
and a voltmeter, and also in this case the ratio between the measured values gives
only an apparent resistance. How can we determine the true resistance R in this
circuit, and how should the internal resistance RA of the amperemeter be chosen?
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Figure 3.21: Current and voltage measurement.

3.4.3.4 Ex: Real current source

a. How should the internal resistance of a current source Ri be specified in order to
obtain a current as independent as possible from the consuming load?
b. You want to run 40 A through an electric coil. The coil has the ohmic resistance
of R = 1 Ω. What should be the internal resistance of the current source in order for
a 10% increase in resistance not to change the current by more than 0.1%?

3.4.3.5 Ex: Real voltage source

A battery can be understood as a real voltage source, consisting of an ideal voltage
source U0 and an internal resistance Ri. The voltage supplied by the battery depends
on the consuming load. Which current flows through the resistor R and which voltage
Uout does the battery supply? How must the resistive load be chosen to maximize
the power spent at the ohmic resistor?

RU

C

R
U

U

Ri

0

R
I I

Ri

0

Figure 3.22: Battery.

3.4.3.6 Ex: Battery circuit

Two batteries 1 and 2 (voltages U1 = 2 V and U2 = 0.5 V) and three resistors R1 =
R2 = R3 = 1 Ω are connected as shown in the figure.
a. What currents flow through the resistors R1, R2, and R3?
b. What is the voltage drop between points A and B?

3.4.3.7 Ex: Circuit with battery

Three batteries (U1 = 20 V, U2 = 5 V, U3 = 20 V) each with a finite internal resistance
of 0.1 Ω are connected in parallel. In series with this circuit two resistors are connected
(R1 = 100 Ω, R2 = 200 Ω) (see scheme). What is the electrical voltage at R1 and R2?
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Probeklausur im Integrierten Kurs Physik II, SS 2008, 30.06.2008 
besprochen in den Präsenzstunden 11 und 12 

 
 
Aufgabe 1: Schaltung mit zwei Batterien    (8 Punkte)  
 
Zwei Batterien 1 und 2 (Spannungen 
U1=2 V und U2 = 0.5 V, sowie drei 
Widerstände R1 = R2 = R3 = 1 Ω sind wie 
in der Abbildung geschaltet.  
a) Welche Ströme fließen durch die 
Widerstände R1, R2 bzw. R3? 
b) Wie groß ist der Spannungsabfall 
zwischen den Punkten A und B? 
 

R1

R2

U1

U2

R3

A B

 
 
Aufgabe 2: Induktiver Schaltkreis          (8 Punkte) 
 
Wir betrachten eine Reihenschaltung aus einer langen 
Spule, einer Spannungsquelle (Spannung U) und einem 
ohmschen Widerstand R = 100 Ω. Die Spule hat 50 
Windungen pro cm und eine Induktivität von 200 mH. 
Für Zeiten t < 0 fließe kein Strom durch die Spule. Zur 
Zeit t = 0 werde die Spannung schlagartig von 0 auf 10 V 
erhöht.  
Nach welcher Zeit erreicht das Magnetfeld in der Spule 
π⋅10-4 T?  
 

 

R

LU

 
 
Aufgabe 3: Fallender Stab       (6 Punkte) 
 
Ein metallischer Stab (Länge L = 1 m) fällt im 
Gravitationsfeld der Erde (Bei t = 0 sei die 
Anfangsgeschwindigkeit 0). Der Stab sei parallel zum 
Erdboden orientiert, senkrecht zum Stab und parallel zum 
Erdboden herrsche das Magnetfeld B

r
 (Betrag: 2⋅10-5 T).  

 

v

B

Welche Spannung wird zwischen den Enden des Drahtes in Abhängigkeit von der Fallstrecke 
h induziert?  
Welchen Spannungswert erhalten Sie nach einem Fall von 5 m? 
 
 
Aufgabe 4: Leitende Kreisringe     (8 Punkte) 
 
Gegeben seien zwei "unendlich dünne", leitende, konzentrische Ringe mit Radien a und b (a 
< b). Die Ringe sollen in der xy-Ebene liegen und ihren gemeinsamen Schwerpunkt im 
Ursprung haben. Auf dem inneren Ring möge sich homogen verteilt (d. h. mit konstanter 
Streckenladungsdichte) die Ladung +q, auf dem äußeren homogen verteilt die Ladung -q 
befinden. 

 1

Figure 3.23: Battery circuit.

R

U

2R1

3

U2

U1

Figure 3.24: Battery circuit.

3.4.3.8 Ex: Kirchhoff’s rules

The current circuit shown in the figure consists of voltage sources, U1 = 20 V and
U2 = 10 V and resistors, R1 = 150 Ω, R2 = R3 = R5 = 100 Ω, and R4 = 50 Ω. What
is the current measured by the Ampèremeter A?

Hausaufgaben (Abgabe: 26.06.2007)

16) Eisenstabbahn

5

Zwei parallele Modelleisenbahnschienen haben eine Dicke von d = 5mm und einen lichten Abstand
a = 50mm. Sie sind durch einen senkrecht zu den Schienen liegenden, beweglichen Metallstab der
Masse m = 0.5g leitend verbunden. Ein an die Schienen angelegter Strom, der auch durch den Me-
tallstab fließt, bewirkt die Beschleunigung des Stabes entlang der Schienen.

(a) Berechnen Sie das Magnetfeld zwischen den beiden Schienen, wenn durch beide der gleiche (aber
unterschiedlich gerichtete) Strom I fließt. Vernachlässigen Sie dabei Inhomogenitäten am Beginn
der Schienen und das vom Strom durch den Stab erzeugte Magnetfeld.

(b) Wie groß ist die Kraft in Schienenrichtung, die den Stab beschleunigt?

(c) Welcher Strom wäre notwendig, um den Stab bei einer Schienenlänge von l = 5m auf eine Ge-
schwindigkeit von 10m/s zu beschleunigen? Vernachlässigen Sie alle Reibungseffekte.

17) Massenspektrometer

3

Ein Massenspektrometer bestehe wie im Bild skiz-
ziert aus einem Kondensator mit Plattenabstabd
D = 5mm, der sich in einem homogenen Magnet-
feld der Stärke B = 0.4T befinde. Ein Isotopenge-
misch aus einfach positiv geladenen Kohlenstoffio-
nen 12C und 14C tritt durch eine Lochblende in den
Kondensator ein. Nach Durchlaufen des Konden-
sators bewegen sich die Ionen im Magnetfeld auf
einer Halbkreisbahn und werden von einem Detek-
tor gezählt, dessen Abstand y zur Lochblende vari-
iert werden kann.

U

D

y

v

B

(a) Welche Spannung muss an die Kondensatorplatten angelegt werden, damit nur Ionen einer Ge-
schwindigkeit von v = 105 m/s den Kondensator durch die zweite Blende verlassen können?

(b) In welchen Abständen y werden die beiden Kohlenstoffisotope jeweils detektiert?

18) Kirchhoffsche Regel

4

Der im Bild gezeigte Stromkreis besteht aus den
Spannungsquellen U1 = 20V und U2 = 10V so-
wie den Widerständen R1 = 150Ω, R2 = R3 =

R5 = 100Ω und R4 = 50Ω. Welcher Strom
wird am Ampèremeter A gemessen?

+
-

U
1

R
4

R
1

A

R
3

R
5

+
-

U
2

R
2

Figure 3.25: Circuits.

3.4.3.9 Ex: Kirchhoff’s rules

Be given R1 = 1 Ω, R2 = 2 Ω, as well as ε1 = 2 V and ε2 = ε3 = 4 V.
a. Show that Kirchhoff’s node rule for steady currents is a consequence of the conti-
nuity equation

∮
~jd ~A = dq

dt .
b. Calculate the currents across the three ideal batteries in the circuit shown in figure.
c. Calculate the potential difference between points a and b.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_ElectricCircuits08.pdf
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R
U U1 3

2

R1 R1

R1 R1

a

b

U2

Figure 3.26: Circuits.

3.4.3.10 Ex: Kirchhoff’s rules

Consider the following circuit fed by a battery of voltage V . Using Kirchhoff’s laws
calculate the voltages and currents at the points P1 and P2. What is the total
resistance of this circuit?

R1 R1

R2 R2

R3

P1

P2

0 v

Figure 3.27: Circuits.

3.4.3.11 Ex: Combination of resistors

You have a maximum of 5 resistors of 100 Ω each. With these try to build circuits
having the total resistance of a. R = 25 Ω, b. R = 66.6̄ Ω, c. R = 120 Ω.

3.4.3.12 Ex: Circuit with capacitors and resistors

In the circuit shown in the figure be R1 = 600 Ω, R2 = 200 Ω, R3 = 300 Ω, C = 20µF,
and U = 12 V.
a. Calculate the voltages measured at the individual resistors and the capacitor as
well as the total current Iges when the capacitor is fully charged (stationary case).
b. At time t = 0 the switch S is opened. After which time the capacitor voltage drops
to 10 mV?

3.4.3.13 Ex: Circuits with resistors and capacitors

Consider the circuit shown in the figure with the following values, R1 = R3 = 100 Ω,
R2 = R4 = 200 Ω, C1 = C2 = 10µF, and U0 = 20 V.
a. Calculate equivalent resistance and the equivalent capacity of the circuit.
b. At time t = 0 the switch S is closed. Find the differential equation for the voltage

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_ElectricCircuits10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_ElectricCircuits11.pdf
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R

U

2

R1 R3

S

C

Figure 3.28: Circuits.

U(t) at the capacitor C1 and solve it. When does the voltage drop to 1/e of its
maximum value?
c. Determine the evolution of the amplitude of the resistor current R3.

R

S

4R3

R2

R1

C2

C1

U0

Figure 3.29: Circuits.

3.4.3.14 Ex: Circuits with resistors and capacitors

Calculate the total resistances and capacitances of the following circuits.
Help for (e): Consider the capacitor as a set of capacitors with/without dielectric
in series and in parallel.

Figure 3.30: Circuits.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_ElectricCircuits14.pdf
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3.4.3.15 Ex: Charging a capacitor

The circuit shown in Fig. 3.19 consists of a voltage source U , a resistance R, and a
capacity C. Initially be U = 0. From the time t = 0 on the voltage source shall give
the constant value U = U0. Calculate the time evolution of the current I in the circuit
as well as the time evolution of the voltages at the capacitor and at the resistance.
Help: Begin by establishing the differential equation for the current I.

3.4.3.16 Ex: R-C circuit

Consider the electrical circuit shown in the figure with the ideal voltage sources Uk,
the resistors Rk, and the capacitor C. Initially the switch C1 is open.
a. Calculate the charge Q0 on the capacitor after a long time.
b. Now, the switch is closed. Using Kirchhoff’s laws, express the charge on the
capacitor as a function of the current IC across the capacitor and the parameters
shown in the figure.
c. Based on the result obtained in (b), calculate the time evolution of the capacitor
charge.
d. Indicate the values for t = 0 and t→∞.
e. Discuss the cases (i) U2 = U1 and (ii) U2 = −U1.

RR

U1 U2

C

RC

Figure 3.31: Circuits.

3.4.3.17 Ex: • Internal resistance of a battery

A 5 V power supply has an internal resistance of 50 Ω. What is the smallest resistor
that can be taken in series with the power source so that the potential drop in the
resistor is larger than 4.5 V?

3.4.3.18 Ex: • Circuit with two batteries

In the circuit shown in the figure, the batteries have negligible internal resistances.
Determine
a. the current in each branch of the circuit
b. the potential difference between the points a and b, and
c. the power supplied by each battery.

3.4.3.19 Ex: • Circuit with three batteries

For the circuit shown in the figure, determine the potential difference between the
points a and b.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_ElectricCircuits15.pdf
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12 V 12 V6 W

4 W 3 Wa

b

Figure 3.32: Circuits.

2 V 2 V
4 W

1 W 1 Wa

b1 W 1 W

4 V

Figure 3.33: Circuits.

3.4.3.20 Ex: • Real voltmeter

The voltmeter shown in the figure can be modeled as an ideal voltmeter (a voltmeter
that has an infinite internal resistance) in parallel with a 10 MΩ resistor. Calculate
the voltmeter reading when
a. R = 1.0 kΩ,
b. R = 10.0 kΩ,
c. R = 1.0 MΩ,
d. R = 10.0 MΩ,
e. R = 100.0 MΩ.
f. What is the largest possible value of R if the measured voltage should be within
10% of the true voltage (i.e. the voltage drop at R without placing the voltmeter)?

10 V VR

2R

voltímetro

Figure 3.34: Voltmeter.

3.4.3.21 Ex: • Circuit with battery and capacitor

The switch shown in the figure is closed after having been open for a long time.
a. What is the initial value of battery current right after the switch S has been closed?
b. What is the battery current a long time after the key has been closed?
c. What are the charges on the capacitor plates a long time after the switch has been
closed?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_ElectricCircuits20.pdf
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d. Now, the switch S is opened again. What are the charges on the capacitor plates
a long time after the switch has been reopened?

50V

15�

S

12�

15�

10�F

��F

10�

Figure 3.35: Circuits.

3.4.3.22 Ex: • Circuit with battery and capacitor

In the circuit shown in the figure, the capacitor has a capacitance of 2.5µF and the
resistor has a resistance of 0.5 M Ω. Before the switch is closed, the potential drop in
capacitor is 12 V, as shown in the figure. The switch S is closed at t = 0.
a. What is the current immediately after the switch has been closed?
b. At what instant of time t is the voltage on the capacitor 24 V?

36 V
R

12 V

�������

S

C

Figure 3.36: Circuits.

3.4.3.23 Ex: Three-phase current

Three-phase current is generated by three potential differences with respect to ground
described by,

Un(t) = U0 sin(ωt+ n 2π
3 ) ,

where n = 1, 2, 3 labels the three phases. Assuming U0 = 127 V.
a. What is the period-averaged voltage of each phase with respect to ground?
b. What is the period-averaged voltage difference between two phases?
c. What is the amplitude of the voltage difference between two phases?
d. Derive the time-dependent expressions for all currents labeled in Fig. 3.37(a).

3.5 Further reading

D.J. Griffiths, Introduction to Electrodynamics [ISBN]

D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics [ISBN]
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https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_ElectricCircuits23.pdf
http://isbnsearch.org/isbn/978-1-108-42041-9
http://isbnsearch.org/isbn/978-0-471-21643-8
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Figure 3.37: (a) Star connection, (b) triangular connection.

H.M. Nussenzveig, Curso de F́ısica Básica: Eletromagnetismo (Volume 3) [ISBN]

http://isbnsearch.org/isbn/978-8-521-20801-3
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Chapter 4

Magnetostatics

Magnetostatics is the theory dealing with stationary currents, the fundamental prob-
lem being the calculation of the force exerted by spatial current distributions. Since
a current is always due to displacement of charges, it is obviously not stationary in
the strict sense. On the other hand, if the charge is transported in such a way that
every charge leaving a volume element is immediately replaced by another equivalent
charge, the integral over the volume element yields a stationary charge distribution.

4.1 Electric current and the Lorentz force

In the previous chapter we have shown that charges can travel through electric con-
ductors, thus producing currents. We observe experimentally that electrically neutral
conductors can exert reciprocal forces. For example, passing currents through two
parallel, almost infinitely long thin wires, we find that they attract (repel) each other
when their directions are (anti-)parallel. We also observe that a compass needle is
deflected near a current-carrying conductor in directions describing concentric circles
around the conductor. If the compass needle traces the field lines of a yet unknown
field, the force attracting (or repelling) two currents DOES NOT point in the direc-
tion of the field lines. These observations show the presence of another phenomenon
and another force not explained by Coulomb’s law (see Fig. 4.1).

Figure 4.1: Mutual force between two conductors carrying antiparallel and parallel currents.
Torque exerted by a current on a compass.

Apparently, the new force is not oriented in the direction of the current I, nor in
the direction of the lines described by the compass needle, but perpendicular to the
two. To describe this fact, we postulate the existence of a field ~B called magnetic

127
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field, such that the force is described by the vector product,

FL = Il× ~B , (4.1)

where l is an element of the current path. This force is called Lorentz force. Note,
that this force behaves like a pseudo-vector.

In order to analyze this phenomenon from the microscopic point of view, we put
forward the hypothesis that the observed force has to do with the motion of the
charges constituting the current within the postulated magnetic field. We have already
introduced in the previous chapter the notion of the current, and we connected the
current density with the propagation velocity of charges in the Eqs. (3.37) and (3.45),

j(r′) = %(r′)v′ . (4.2)

With this we get,

FL = I

∫

C
dl′ × ~B = I

∫

C
ê′j × ~Bdl′ (4.3)

=

∫

V
Iδ2(r′⊥ − l⊥)ê′j × ~BdV ′ =

∫

V
j(r′)× ~BdV ′ =

∫

V
%(r′)v′ × ~B(r′)dV ′ ,

where we simplified the notation j(r′) = Iδ2(r′⊥− l⊥)ê′j = Iδ(ê1 · r′− ê1 · l)δ(ê2 · r′−
ê2 · l)ê′j , where ê1,2 and ê′j are all mutually orthogonal. We conclude,

FL = Qv × ~B . (4.4)

Figure 4.2: Parametrization of a yarn of current using the following recipe: For each point in
space r′ ∈ R check that this point is also in r′ ∈ C, that is, whether there exists a t such that
r′ = l(t). At this point determine the direction of the path, ê′j = dl/|dl|, find two orthogonal
unit vectors ê1,2 and apply the Dirac distribution to these dimensions.

Example 37 (Cyclotron and synchrotron motion): A consequence of the
fact that, according to (4.4), the force on moving charges is always perpendicular
to their velocity is, that their trajectory in a homogeneous magnetic field are
circular. The centrifugal force compensates for the Lorentz force when,

FL = QvB = m
v2

R
= Fcf ,

which allows to determine the radius R of the circle 1.

This fact is used in particle accelerators called cyclotrons, where beams of

1This behavior can be observed by injecting a charged particles into a homogeneous magnetic
field. Collimated electron beams can be created by an electrode device called the Wehnelt’s cylinder
used in cathode ray tubes called Braun’s tube.
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charged particles are accelerated in by electric fields and deflected by homo-

geneous magnetic fields located between the regions of acceleration.

An important consequence of the particular form of the Lorentz force is the fact
that magnetic forces do not work,

Wmg =

∫

C
F · dl = 0 .

The direction of motion of a charge can be changed by magnetic fields, but not the
absolute value of its velocity. This may seem surprising, as we know that magnets
can exert forces of iron bodies.

Example 38 (Work exerted by magnetic fields): We consider a conduc-
tive wire loop carrying current and being partially immersed in a homogeneous
magnetic field, as shown in Fig. 4.3. The device is in equilibrium, when,

F = IaB = mg .

When the current exceeds the value mg/aB, a vertical force lifting the device is
observed, such that the device gains potential energy,

W = Fh ,

where h is the acquired height. However, the vertical motion corresponds to a

current Iêz, which creates a force contrary to the current I, such that the battery

feeding the wire loop needs to work to maintain the current. The magnetic

field only reorients the force into a direction having a parallel component to

the horizontal part of the wire loop, thus allowing the battery to work against

this force. We shall discuss this from another point of view in context of the

Lenz-Faraday law.

Figure 4.3: Hypothetical device to make the magnetic field work.

4.1.1 The Hall effect

As an example we consider the Hall effect: As shown in Fig. 4.4, a current flows to
the right through a rectangular rod made of conductive material in the presence of a
perpendicular uniform magnetic field ~B. If the mobile charges are positive, they will
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be deflected by the magnetic field in downward direction. This deflection results in an
accumulation of charges on the upper and lower boundaries of the rod which, in turn,
generates an electric Coulomb force counteracting the magnetic force. A balance is
reached when the two forces compensate:

FC = QE = Q
UH

w
= QvmedB = FL . (4.5)

The difference of the electric potentials on the upper and lower boundaries is called
Hall voltage. The average velocity of the charges can be estimated from Eq. (3.45),

vmed =
j

naNQ
, (4.6)

where na is the volumetric density of molecules of the rod material, each molecule
providing N free electrons. Now, using the dimensions of the rod outlined in Fig. 4.4,
we calculate the Hall voltage,

UH = vmedBw =
j

naNQ
Bw =

IB
d naNQ

= AH
IB
d

, (4.7)

where AH = 1/naNQ is a constant which depends on the rod material.
If the mobile charges were negative, the Hall voltage would change its sign. This

fact can be used to identify the sign of free charges in unknown current conductors.
Resolve the Excs. 4.1.3.1-4.1.3.13.

Figure 4.4: Illustration of the Hall Effect.

4.1.2 Biot-Savart’s law

In the same way as we parametrize charge distributions (linear, superficial and volu-
metric) in electrostatics,

∑

k

(..)Qk −→
∫

C
(..)λdl ∼

∫

S
(..)σdS ∼

∫

V
(..)%dV , (4.8)

we can parametrize current distributions (linear, superficial and volumetric) in mag-
netostatics,

∑

k

(..)Qkvk −→
∫

C
(..)Idl ∼

∫

S
(..)~κdS ∼

∫

V
(..)jdV . (4.9)
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In electrostatics we had the condition %̇ = 0, which implies, via the continuity
equation (3.38),

∇ · j = 0 . (4.10)

In magnetostatics we furthermore demand that j̇ = 0.

The equivalent of Coulomb’s law in magnetostatics is the Biot-Savart law,

~B(r) =
µ0

4π

∫

C

I(r′)× (r− r′)

|r− r′|3 dl′ =
µ0I

4π

∫

C

dl′ × (r− r′)

|r− r′|3 =
µ0

4π

∫

V
j(r′)× r− r′

|r− r′|3 dV
′ .

(4.11)

Analogously to the way in which we apply Coulomb’s law to electrostatics to
calculate the electric field produced by charge distributions, we can apply the Biot-
Savart’s law in magnetostatics to calculate the magnetic field produced by currents.

Example 39 (Magnetic field of a straight current wire): We consider
an infinitely long and thin wire oriented along the z-axis carrying a current I
parametrized by j(r′) = êzIδ(x

′)δ(y′). Using r = ρêρ + zêz and r′ = z′êz we
calculate,

~B(r) =
µ0I

4π

∫ ∞
−∞

dz′
êz × (r− r′)

|r− r′|3 =
µ0I

4π
êz × ρêρ

∫ ∞
−∞

dz′√
ρ2 + (z − z′)2

3

=
µ0I

4π
êz × ρêρ

[
z′

ρ2
(ρ2 + z′2)−

1
2

]∞
−∞

=
µ0I

4π
êz × ρêρ

2

ρ2
=
µ0I

2πρ
êφ .

With this we can now calculate the force exerted by this current on another
current I2 flowing in parallel direction but at a distance ρ:

F = I2lêz × ~B =
µ0II2l

2πρ
(−êρ) .

So the force is attractive.

Example 40 (Magnetic field of a loop of circular current): We consider
a circular current parametrized by j(r′) = êφIδ(z)δ(ρ−R). Following the Biot-
Savart law the generated magnetic field is,

~B(r) =
µ0

4π

∫
V

j(r′)× (r− r′)

|r− r′|3 dV ′ =
µ0I

4π

∮
C

êφ′ × (r−Rêr′)
|r−Rêr′ |3

Rdφ′ .

On the symmetry axis r = zêz we get,

~B(zêz) =
µ0IR

4π

∮
C

êφ′ × (zêz −Rêr′)√
R2 cos2 φ′ +R2 sin2 φ′ + z2

3 dφ
′

=
µ0IR

4π

∮
C

zêr +Rêz√
R2 + z2

3 dφ
′ =

µ0IR
2

2
√
R2 + z2

3 êz ,

where the integral containing the term zêr vanishes by symmetry.

Resolve the Excs. 4.1.3.14 to 4.1.3.15.



132 CHAPTER 4. MAGNETOSTATICS

4.1.3 Exercises

4.1.3.1 Ex: Force on a current conductor

A piece wire having the shape of a semicircle (radius R) congruent to the xy-plane

at z = 0 is immersed in a homogeneous magnetic ~B-field oriented along êz, as shown
in the scheme. Through the wire runs a current I. Calculate the force on the loop
and compare it to the force on a piece of straight wire oriented along the y-axis with
length 2R. The current in this wire runs along êy.

Figure 4.5: Wires.

4.1.3.2 Ex: Lorentz force

In a wooden cylinder of mass m = 0.25 kg and length L = 10 cm is wound a 10 turns
coil of conducting wire such that the axis of the cylinder is within the plane of the
coil. The cylinder is (not slipping) on an plane inclined by α = 30◦ with respect
to the horizontal, so that the plane of the coil is parallel to the inclined plane. The
whole setup is subject to a homogeneous vertical magnetic field with the absolute
value B = 0.5 T. What should be the minimum current through the coil to prevent
the coil from rotating around its center of mass?

Figure 4.6: Lorentz force.

4.1.3.3 Ex: Magnetic field mass spectrometer

A spectrometer is used to separate doubly ionized uranium ions of mass 3.92×10−25 kg
from other similar isotopes. The ions are first accelerated by a potential difference of
100 kV and then enter a homogeneous magnetic field, where they are deviated into a
circular orbit of radius 1 m. After having covered an angle of 180◦, they enter through
a 1 mm wide and 1 cm high slit and are accumulated in a collector.
a. Determine the magnetic field of the mass spectrometer from the energy balance of

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_ForcaLorentz01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_ForcaLorentz02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_ForcaLorentz03.pdf
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the (individual) ions.
b. The device should be able to separate 100 mg of the desired ions per hour. What
should be the intensity of the ionic flux in the beam?
c. What heat is produced in the collector in one hour?

4.1.3.4 Ex: • Mass spectrometer

In a mass spectrometer, a 24Mg+ ion has a mass of 3.983 · 10−26 kg and is accelerated
by a potential difference of 2.5 kV. It then enters a region, where it is deflected by a
magnetic field of 557 G.
Determine the radius of curvature of the orbits of the ion.
b. What is the difference between the radii of the orbits of the ions 26Mg+ and 24Mg+?
Consider a ratio between the masses of 26 : 24.

4.1.3.5 Ex: Magnetron

A magnetron consists of a diode tube, an anode shaped like a circular cylinder with
radius RA = cm in the center of which the cathode filament is coaxially located.
On the glass tube of this diode is a wound cylindrical coil whose axis coincides with
the anode. The coil is long enough that the magnetic field along the cathode can be
considered homogeneous. The electrons emitted from the cathode wire simultaneously
are subject to the electric field between cathode and anode, U = 1000 V and the
magnetic field B = 0.533 · 10−2 T. The latter has been adjusted so that the electrons
barely do not reach the anode. The whole apparatus is basically a velocity filter for
electrons and thus a compact version of J.J. Thomson’s e/m experiment (1987). From
the equation of motion of an electron in the tube, determine the ratio e/m.

4.1.3.6 Ex: Conductive copper strips

A copper strip of length l = 2 cm, width b = 1 cm, and thickness d = 150µm lies within
a homogeneous magnetic field ~B of value 0.65 T, oriented perpendicular to the flat side
of the strip. The concentration of free charges in copper is 8.47× 1028 electrons/m3.
What is the potential difference V across the width of the tape, if it is traversed by
a current of I = 23 A?

4.1.3.7 Ex: • Lorentz force

A firm, horizontal, 25 cm long linear wire has a mass of 5 g and is connected to an
emf-source via light and flexible wires. A magnetic field of 1.33 T is horizontal and
perpendicular to the wire. Determine the current needed for the wire to float, that
is, when the wire is released from rest, it remains at rest.

4.1.3.8 Ex: • Lorentz force

A current carrying wire is bent in a closed semicircle of radius R in the xy-plane.
The wire is inside a uniform magnetic field oriented in +z-direction, as shown in the
figure. Verify that the force exerted on the ring is zero.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_ForcaLorentz04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_ForcaLorentz05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_ForcaLorentz06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_ForcaLorentz07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_ForcaLorentz08.pdf
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Figure 4.7: Lorentz force.

4.1.3.9 Ex: • Coulomb and Lorentz force

Two equal point charges are, at some instant of time, located at (0, 0, 0) and (0, b, 0).
Both are moving with velocity v in +x-direction (consider v � c). Determine the
ratio between the magnitude of the magnetic force and the magnitude of the electric
force at each charge.

4.1.3.10 Ex: Penning trap

In Penning traps, charged particles move under the influence of a homogeneous mag-
netic field ~B = Bhêz and a quadrupolar electric field ~E = Eq(ρêρ − 2zêz). On which
orbits do the particle move?
Help: Consider the axial and radial movements separately. For the radial motion
consider two cases:
1. The influence of the electric field is negligible,
2. centripetal force is negligible.

4.1.3.11 Ex: Magnetic trap near a current wire

An infinitely long conducting wire (radius R, axis in z-direction at position x = y = 0)
carries the current I.
a. Calculate the magnetic field inside and outside the wire.
b. Now a homogeneous magnetic field is added, ~Bapl = B0êx. Calculate the absolute

value of the total magnetic field | ~Btot| inside and outside of wire.

c. Where inside and outside the wire do appear points where | ~Btot| vanishes? What
conditions for the parameters I, R, and B0 must be met for such points to exist?

4.1.3.12 Ex: Charge in homogeneous fields

A charge e moves in vacuum under the influence of homogeneous fields ~E and ~B.
Suppose that ~E · ~B = 0 and v · ~B = 0. At what speed does the charge move without
acceleration? What is the absolute value of its speed if |~E| = | ~B|?

4.1.3.13 Ex: Rain accelerated by the Earth’s magnetic field

Analyze the following train propulsion concept. The train shall be propelled by the
magnetic force of the vertical component of the Earth’s magnetic field acting on the
current-carrying axes of the train. The value of the vertical component of the Earth’s
magnetic field is 10 µT, the axes have a length of 3 m. The current is fed by the rails
and flows from one rail through the conducting wheels and axles to the other rail.
a. What must be the amplitude of the current to generate the modest force of 10 kN

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_ForcaLorentz09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_ForcaLorentz10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_ForcaLorentz11.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_ForcaLorentz12.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_ForcaLorentz13.pdf
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on an axis?
b. What is the rate of electric energy loss due to heat production?

4.1.3.14 Ex: Biot-Savart law

We consider an infinitely long and thin wire oriented along the z-axis and concen-
trically embraced by a hollow conductor with radius R and negligible wall thickness.
Through the conductor flows the current I0 and through the wire the current I1.
a. Calculate based on the Biot-Savart law the magnetic field produced by the inner
wire at a distance d from the z-axis.
b. Calculate the force exerted by the magnetic field of the inner wire on a surface
element of the current conductor.
c. What is the resulting pressure with I1 = −I0 = 10 A, R = 1 mm?
Help: ∫ b

a

(c2 + x2)−
3
2 dx =

[ x
c2

(c2 + x2)−
1
2

]b
a

4.1.3.15 Ex: Biot-Savart law

We consider an infinitely long hollow conductor running along the z-axis with finite
wall thickness with inner radius R− ε and outer radius R+ ε. The current density j0
within the hollow conductor is constant and the total current is I0.
a. Calculate j0 from I0, ε, and R.
b. Calculate, based on Ampere’s law, the magnetic field produced by the hollow
conductor at a distance ρ from the z-axis for R− ε < ρ < R+ ε.
c. Calculate the resulting force on a volume element of the current-carrying conductor.
d. Integrate the radial force and calculate the limit ε→ 0.
e. What is the resulting pressure in I0 = 10 A, R = 1 mm? Does the force act inward
or outward?

4.1.3.16 Ex: • Magnetic field of the Earth

The Earth’s magnetic field is approximately 0.6 G at the magnetic poles and points
vertically downwards at the magnetic pole of the northern hemisphere. If the magnetic
field were due to an electric current circulating on a ring with a radius equal to Earth’s
inner iron core (approximately 1300 km),
a. what would be the required amplitude of the current?
b. What orientation would the current need to have, the same as Earth’s rotational
motion or the opposite? Justify.

4.1.3.17 Ex: Biot-Savart law

Consider the following device: A current I runs through two identical infinitely thin
rings with radius R. The common center of the two rings is at the origin of the
coordinates. One ring lies in the xy-plane and the other on the xz-plane.
a. Parametrize the current density j in spherical coordinates.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_BiotSavart01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_BiotSavart02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_BiotSavart03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_BiotSavart04.pdf
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b. Show that the ~B field resulting from this device at source is given by:

~B(0) = −µ0I

2

1

R
êz −

µ0I

2

1

R
êy .

Help: A δ-function in spherical coordinates for the r variable must be multiplied by
1
r ; a δ-function in spherical coordinates for the φ variable must be multiplied by π

2 .

4.2 Properties of the magnetic field

4.2.1 Field lines and magnetic flux

The magnetic flux is introduced in the same way as the electric flux,

ΨM ≡
∫

S
~B · dS . (4.12)

Resolve the Exc. 4.2.4.1.

4.2.2 Divergence of the magnetic field and Gauß’s law

Let us compute the divergence of a magnetic field given by Biot-Savart’s law 2,

∇r · ~B =
µ0

4π

∫

V
[∇r × j(r′)] · r− r′

|r− r′|3 dV
′ − µ0

4π

∫

V
j(r′) ·

[
∇r ×

r− r′

|r− r′|3
]
dV ′ = 0 ,

(4.13)
since, as we have already shown, the rotation of a Coulombian field is zero. Therefore,

∇ · ~B = 0 . (4.14)

With Gauß’ law we can derive the integral version of this statement,

∮

∂V
~B · dS = 0 . (4.15)

Comparing this equation with the corresponding electrostatic equation (2.13), we de-
duce the following interpretation: The total magnetic flux ΨM across a closed surface
must vanish and can not be changed by hypothetical magnetic charges, i.e. magnetic
charges do not exist !

A direct consequence of this law is that we can introduce the concept of the
vector potential, which is fundamental in the sense that it allows us to formulate
electrodynamics completely in terms of potentials. We will dedicate the whole next
section to magnetic potentials.

2Using the rule ∇ · (~E × ~B) = (∇× ~E) · ~B − ~E · (∇× ~B).
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4.2.3 Rotation of the magnetic field and Ampère’s law

Let us now calculate the rotation of the magnetic field given by Biot-Savart’s law 3,

∇r × ~B =
µ0

4π

∫

V
−[j(r′) · ∇r]

r− r′

|r− r′|3 dV
′ +

µ0

4π

∫

V
j(r′)

(
∇r ·

r− r′

|r− r′|3
)
dV ′ (4.16)

=
µ0

4π

∫

V
[j(r′) · ∇r′ ]

r− r′

|r− r′|3 dV
′ +

µ0

4π

∫

V
j(r′)4πδ(r− r′)dV ′

=
µ0

4π

∫

V
[j(r′) · ∇r′ ]

r− r′

|r− r′|3 dV
′ + µ0j(r) . (4.17)

Considering the x-component,

(∇r × ~B)x =
µ0

4π

∫

V
j(r′) · ∇r′

x− x′
|r− r′|3 + µ0jx(r)

= −µ0

4π

∮

∂V
j(r′)

x− x′
|r− r′|3 dS

′ +
µ0

4π

∫

V

x− x′
|r− r′|3∇r′ · j(r

′)dV ′ + µ0jx(r) .

The surface integral vanishes when the volume goes to infinity. On the other hand,
∇ · j = −%̇ = 0. With this, we obtain,

∇× ~B = µ0j . (4.18)

The results (4.14) and (4.18) represent parts of Maxwell’s first and fourth equa-
tions. The equation (4.18) is also called Ampère’s law. The integral version can be
obtained from Stokes’ law, ∮

C
~B · dl = µ0I . (4.19)

The interpretation of Ampere’s law is, that every current produces a rotational mag-
netic field, that is, a field with closed field lines. Measuring the magnetic field along
an closed path we can evaluate the current passing through the surface delimited by
the path.

Ampère’s law has many applications. Let’s discuss some in the next.

Example 41 (Magnetic field of a straight current-carrying wire): Let us
re-evaluate the example 39 using Ampere’s law,∮

~B · dl = B

∫ 2π

0

ρdφ = B2πρ = µ0I .

Hence,

B =
µ0I

2πρ
.

Example 42 (Ampère’s law): We can use Ampère’s law to show that a locally
uniform magnetic field, such as the one shown in Fig. 4.8, is impossible. Let us

3Using the rule ∇× (~E × ~B) = ( ~B · ∇)~E − (~E · ∇) ~B + ~E(∇ · ~B)− ~B(∇ · ~E).
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have a look at the rectangular curve shown by the dashed lines. With the chosen
geometry, the curve does not include current,

µ0I = 0 .

On the other hand, the magnetic field accumulated along the curve is,∮
C

~B · dl 6= 0 .

This is a contradiction. Thus, this example shows that, in the absence of cur-

Figure 4.8: Impossibility of a localized homogeneous magnetic field.

rents, any magnetic field is conservative. We could then define a scalar potential

whose gradient would be the magnetic field, but this potential must be simply

connected, i.e. not be traversed by currents, which limits the practical use of

such a potential.

Example 43 (Field of a solenoid): A solenoid is a very long coil (the distance
between two consecutive turns is much smaller than the radius and the total
length l of the coil) carrying a current I (see diagram in Fig. 4.9). Ampère’s law
can be used to easily calculate the magnetic field inside a solenoid composed of
N turns,

B dl =

∮
C

~B · dr = µ0I dN .

Hence,

B = µ0I
dN

dl
.

Figure 4.9: Scheme of a solenoid with loop density dN/dl.

Resolve the Excs. 4.2.4.2 to 4.2.4.9. In the Excs. 4.2.4.10 to 4.2.4.12 we apply the
Biot-Savart law to Helmholtz coils and anti- Helmholtz coils.
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4.2.4 Exercises

4.2.4.1 Ex: • Magnetic flux

A long solenoid has n turns per unit length, radius R1, and carries a current I. A
circular coil with radius R2 and N turns is coaxial to the solenoid and is equidistant
from its ends.
a. Determine the magnetic flux through the coil if R2 < R1.
b. Determine the magnetic flux through the coil if R2 > R1.

4.2.4.2 Ex: Magnetic field of a conducting ring and Ampère’s law

A ring-shaped conducting loop lies in the yz-plane; the loop’s symmetry axis is
the x-axis. It is traversed by a current I generating on the axis the field Bx =
1
2µ0IR

2(x2 +R2)−3/2.

a. Calculate the line integral
∫
~B · ds along the x-axis between x = −L and x = +L.

b. Show that for L→∞ the line integral converges to µ0I.
Help: This result can also be obtained with Ampère’s law, when we close the inte-
gration path through a semicircle with radius L, for which holds B ' 0, when L is
very large.

4.2.4.3 Ex: Biot-Savart’s and Ampère’s laws

a. Calculate the magnetic field generated by a constant current I on a straight con-
ductor piece of length L.
b. Show that for an infinitely long conductor the Biot-Savart law becomes Ampere’s
law.

4.2.4.4 Ex: Solenoid

a. To determine the number of turns of a solenoid with diameter D = 4 cm and length
L = 10 cm, an experimenter passes a current I = 1 A through the coil. He measures
the magnetic field B = 10 mT. How many windings are there?
b. To confirm it measures the diameter of the copper wire (d = 1 mm) and ohmic
resistance finding R = 2 Ω. On the internet he finds the resistivity of copper ρ =
1.7 · 10−8 Ωm.

4.2.4.5 Ex: Toroidal coil

A coil with N turns is arranged in a toroidal form with rotational symmetry around
z-axis and has its center at the origin of the coordinates. The coil is densely wound
and traversed by a current I (see scheme).

a. Calculate the êφ-component of the ~B-field for z = 0 (xy-plane) as a function of
distance ρ from the origin.
b. Determine the êφ-component of the ~B-field in the entire inner space outside the
toroid. Draw the êφ component as a function of ρ.
c. What should be the value of b, so that Bφ is constant within the toroid with an
accuracy of α = 1%, when a = 1 cm? [That is: Bφ(b− a)− Bφ(b+ a) < α · Bφ(b)]

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_FluxoMagnetico01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_LeiAmpere01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_LeiAmpere02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_LeiAmpere03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_LeiAmpere04.pdf


140 CHAPTER 4. MAGNETOSTATICS

a b

I N

�

Figure 4.10: Toroidal coil.

4.2.4.6 Ex: • Toroidal coil

A toroidal coil tightly wound with 1000 turns has an inner radius of 1.0 cm, an outer
radius of 2.0 cm, carries a current of 1.5 A. The torus is centered at the origin with
the centers of the individual turns in the z = 0 plane. What is the intensity of the
magnetic field in the z = 0 plane a distance of (a) 1.1 cm and (b) 1.5 cm away from
the origin?

4.2.4.7 Ex: Inhomogeneous current density

The current density on a straight wire of infinite length with the radius R grows
linearly from the center outward, j(r) = j0rêz, where êz shows in the direction of the
wire and the total current going through the wire is I.
a. Calculate j0 as a function of I.
b. Calculate, using Ampere’s law, the magnetic field inside and outside the wire.
c. Make a graph of the normalized magnetic field, B(r)/BR, versus r/R, where BR ≡
µ0I/2πR.

4.2.4.8 Ex: Magnetic field in a coaxial cable

A coaxial cable consists of an inner conductor with radius R1 and a cylindrical outer
conductor with inner radius R2 and outer radius R3. In both conductors flows the
same current I in opposite directions. The current densities in each conductor are
homogeneous.
a. Calculate the current densities in each conductor.
b. Calculate the magnetic field B(r) for r ≤ R1,
c. for R1 ≤ r ≤ R2,
d. for R2 ≤ r ≤ R3,
e. for R3 ≤ r.

Figure 4.11: Magnetic field in a coaxial cable.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_LeiAmpere05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_LeiAmpere06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_LeiAmpere07.pdf
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4.2.4.9 Ex: Magnetic field of a current conductor

In a straight, infinitely long conductor with circular cross-sectional area with radius
R runs a current I with a uniform current density distribution. How are the magnetic
induction field lines ~B?
a. Calculate ~B inside and outside the conductor.
b. Prepare a scheme of the profile B(r) ≡ | ~B(r)|, where r be the distance from the
symmetry axis of the conductor in a direction perpendicular to it.

4.2.4.10 Ex: Helmholtz and anti-Helmholtz coils

a. Show that the magnetic field of a round current loop conductor with radius R on
the symmetry axis is given by,

~B(z) = −µ0I

2

R2

√
R2 + z2

3 êz .

b. Now consider two identical parallel loops placed on the symmetry axis with distance
d = R. The loops are traversed by currents of equal amplitude. What is the behavior
of the magnetic field on the symmetry axis for (i) equal directions of currents (ii)
opposite directions? Choosing as the origin the center between the two coils, expands
the magnetic field to second order in a Taylor series around the origin.

4.2.4.11 Ex: Helmholtz coils

Two identical circular coils of radius R and negligible thickness are mounted with
their axes coinciding with the z-axis, as shown in the figure below. Their centers are
separated by a distance d, with the midpoint P coinciding with the origin of the z-axis.
The coils carry electric currents of the same intensity I, and both counterclockwise.
a. Use the Biot-Savart law to show that the magnetic field B(z) along the z-axis is,

~Bt+(z) = −µ0I

2
êz

(
R2

√
R2 + (z −R/2)2

3 ±
R2

√
R2 + (z +R/2)2

3

)
.

b. Assuming that the spacing d is equal to the radius R of the coils, show that at
point P the following equalities are valid: dB/dz = 0 and d2B/dz2 = 0.
c. Looking at the graphs below, which curve describes the magnetic field along the
z-axis in the configuration of item (b)? Justify!
d. Assuming that the current in the upper coil is reversed, calculate the new value of
the magnetic field at point P.

4.2.4.12 Ex: • Helmholtz coils

A pair of identical coils, each with a radius of 30 cm, is separated by a distance
equal to their radii. Called Helmholtz coils, they are coaxial and carry equal currents
oriented such that their axial fields point into the same z-direction. A feature of
Helmholtz coils is, that the resulting magnetic field in the region between the coils
is quite uniform. Assume that the current in each one is 15 A and that there are
250 turns for each coil. Using a spreadsheet, calculate and plot the magnetic field

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_LeiAmpere08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_LeiBiotSavart01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_LeiBiotSavart02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_LeiBiotSavart03.pdf
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Figure 4.12: (code) Geometry and magnetic field amplitude of a pair of Helmholtz coils.

along the z-axis for −30 cm < z < +30 cm. Within which z-range does the field vary
by less than 20%?

4.3 The magnetic vector potential

The fact that the divergence of the magnetic field vanishes, ∇ · ~B = 0, allows us to
introduce a vector field A called vector potential of which the magnetic field is the
rotation,

~B = ∇×A . (4.20)

4.3.1 The Laplace and Poisson equations

Ampère’s law says,

µ0j = ∇× ~B = ∇× (∇×A) = ∇(∇ ·A)−∇2A . (4.21)

Note that, just as we can add a constant to the electrostatic potential without
changing the electric field, we have the freedom to add to the vector potential the
gradient of a scalar field,

∇×A = ∇× (A +∇χ) , (4.22)

since the rotation of a gradient always vanishes. This freedom allows us to impose
other conditions on this scalar field χ(r). One of them is called the Coulomb gauge,

∇ ·A ≡ 0 . (4.23)

To show that it is always possible to choose a function χ such, that the potential
vector A +∇χ satisfies the condition (4.23) and at the same time produces the same
magnetic field (4.22), we just insert this potential into Eq. (4.23) and find a formal
solution of the following Poisson equation,

∇2χ = −∇ ·A . (4.24)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Magnetostatics_Helmholtz.m
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is simply the Coulomb potential [see (2.33)],

χ(r) =
1

4π

∫

V

∇r′ ·A(r′)

|r− r′| dV ′ , (4.25)

supposing that ∇ ·A r→∞−→ 0.

Within the Coulomb gauge the Eq. (4.21) also adopts the simple form of a Poisson
equation,

∇2A = −µ0j , (4.26)

which we can solve,

A(r) =
µ0

4π

∫
j(r′)

|r− r′|d
3r′ . (4.27)

This relationship is the equivalent of the electrostatic potential (2.35). We verify that
we recover Biot-Savart’s law (4.8) via,

∇r ×A(r) =
µ0

4π

∫

V
j(r′)× |r− r′|

|r− r′|3 dV
′ . (4.28)

Example 44 (Vector potential of a one-dimensional current): As an
example we consider a one-dimensional current, j(r′) = Iδ2(r′ − s⊥)ê′j ,

A(r) =
µ0I

4π

∫
C

ds′

|r− r′| and ~B(r) =
µ0I

4π

∫
C

ds′ × |r− r′|
|r− r′|3 .

For a current element oriented along the z-axis,

A(r) =
µ0I

4π

∫ a

0

êzdz
′√

ρ2 + (z − z′)2
=
µ0I

4π
êz ln

−(z − a) +
√
r2 + (z − a)2

−z +
√
r2 + z2

.

The scheme 4.13 summarizes the fundamental laws of magnetostatics.

Figure 4.13: Organization chart for the fundamental laws of magnetostatics. Note, that
there is no simple expression to calculate A from ~B.
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4.3.2 Magnetostatic boundary conditions

In order to find the magnetostatic boundary conditions imposed by current-carrying
interfaces, we proceed in the same way as in the electrostatic case. First, we consider
a ’pill box’, as schematized in Fig. 4.14. From

∮
~B · dS = 0 , (4.29)

we find for the component of the magnetic field perpendicular to the interface,

B⊥top = B⊥down . (4.30)

Figure 4.14: Illustration of the pillbox-shaped volume delimited by the surface A cutting
through a small part of the interface. Also shown are paths on the interface being perpen-
dicular (l1) or parallel (l2) to the surface current κ.

We now consider a closed loop in the plane defined by the magnetic field and
perpendicular to the current. From

∮
~B · dl2 = (B(2)

top − B(2)
bottom)l2 = µ0I = µ0κl2 , (4.31)

where we defined κ ≡ I/l2 as the surface current density, that is, the current dI
flowing through a ribbon of width dl2 sticking to the interface. We find,

B(2)
top − B(2)

bottom = µ0κ . (4.32)

Thus, the component of ~B parallel to the surface but perpendicular to the current is
discontinuous by a value µ0κ.

Similarly, a closed loop in the direction parallel to the current shows that the
parallel component of ~B is continuous,

∮
~B · dl1 = (B(1)

top − B(1)
bottom)l1 = 0 . (4.33)

In summary,
~Btop − ~Bbottom = ~B‖top − ~B‖bottom = µ0~κ× n̂ . (4.34)

In the same way as the scalar potential in electrostatics, the potential vector
remains continuous through the interface,

Atop = Abottom , (4.35)
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because ∇ ·A = 0 ensures that the normal component is continuous and,

∮
A · dl =

∫
∇×A · dS =

∫
~B · dS = ΨM , (4.36)

means that the tangential components are continuous (the flux through an Amperian
loop of negligible thickness vanishes). On the other hand, the derivative of A inherits

the discontinuity of ~B:

∂Atop

∂n
− ∂Abottom

∂n
= −µ0~κ , (4.37)

where n is the coordinate perpendicular to the surface.

Example 45 (Proof of the discontinuity of the derivative of the vector
potential): To prove the statement (4.37) we consider a surface current in the
direction ~κ = κêx within an interface located in the x-y-plane. So,

~Btop− ~Bbottom =

 0

µ0κ

0

 =

∂yA
(z)
top − ∂zA

(y)
top

∂zA
(x)
top − ∂xA

(z)
top

∂xA
(y)
top − ∂yA

(x)
top

−
∂yA

(z)
bottom − ∂zA

(y)
bottom

∂zA
(x)
bottom − ∂xA

(z)
bottom

∂xA
(y)
bottom − ∂yA

(x)
bottom

 .

Now,

0 = ∂yA
(z)
top − ∂yA

(z)
bottom = ∂zA

(y)
top − ∂zA

(y)
bottom = ∂xA

(y)
top − ∂xA

(y)
bottom = ∂yA

(x)
top − ∂yA

(x)
bottom

µ0κx = ∂zA
(x)
top − ∂zA

(x)
bottom − ∂xA

(z)
top + ∂xA

(z)
bottom .

Assuming a uniform field, only the derivative in z can contribute, such that,

µ0κx = ∂zA
(x)
top − ∂zA

(x)
bottom .

4.3.3 Exercises

4.3.3.1 Ex: Vector potential and electric field of a rotating charged
sphere

On the surface of a hollow sphere with radius R be evenly distributed the charge Q.
The sphere rotates at constant angular velocity ~ω around one of its diameters.
a. Determine the current density generated by the motion j(r).

b. Derive the components of the potential vector A(r) and the magnetic field ~B(r).

4.3.3.2 Ex: Magnetic field of a rotating spherical layer with spherical
harmonics

Calculate the vector potential, magnetic field and magnetization of a charged rotating
spherical layer using spherical harmonics.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_PotencialVetorial07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_PotencialVetorial07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_PotencialVetorial08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_PotencialVetorial08.pdf
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4.3.3.3 Ex: Conducting thin loops

Consider a circular conducting loop with radius R. The wire of the loop is infinitely
thin (δ-function). Through the loop flows a continuous current I.
a. What is the expression for current density j(r)? Express the result in spherical
coordinates considering that the integral of the current over a surface perpendicular
to the wire must give I.
b. Calculate the magnetic dipolar moment of this current loop,

m =
1

2

∫
[r× j(r)]d3r .

c. For large distances from a localized current distribution, the potential vector A is
dominated by the dipolar contribution,

A(r) =
m× r

r3
.

What are, in this approximation, the values of the potential vector A and the magnetic
field ~B for the conducting loop?

4.3.3.4 Ex: Conducting thin loops

Consider a system of N different conducting loops (use δ-functions) through which
runs a current Ij (j = 1, . . . , N). The magnetic flux through the j-th loop is then
given by,

Φj =

N∑

m=1

∫

Fj

~Bm · dS ,

where the integral must be taken over the area enclosed by the current loops j and
~Bm is the part of the magnetic field due to the j-th loop.
a. Show,

Φj = c

N∑

m=1

LjmIm

with the induction coefficient,

Ljm = 1
c2

∫
j

∫
m
drj · drm

|rj − rm| ,

where the integrals are taken over the loops j and m.
b. Also show that the magnetic field energy of the loop system is given by,

W =
1

2

∑

j,m

LjmIjIm .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_MomentoMagnetico01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_MomentoMagnetico02.pdf
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4.3.3.5 Ex: Conducting thin loops

A conducting loop made of two semicircles (see diagram) with radii ri = 0.3 m and
ra = 0.5 m carries a current I = 1.5 A.
a. Calculate the magnetic moment ~µ of the conducting loop.
b. The conducting loop is now traversed by a B-field of amplitude B = 0.3 T. Calculate
the resulting torque m on the loop, when the B-field is directed (i) toward z, (ii)
toward x, and (iii) orthogonal to the plane of the scheme.

Figure 4.15: Loop.

4.3.3.6 Ex: Gauge transformation

Be given the potential vector,

A(r) =
1

y2 + z2 + a2




0

z

−y


 .

Discusses the corresponding magnetic field ~B = ∇×A.
a. Show that the potential

A′(r) =
1

y2 + z2 + a2




0

y + z

z − y




gives the same magnetic field as the potential A(x).
b. Show:

A′(r) = A(r)−∇α(r)

and determine α(r).

4.3.3.7 Ex: Coulomb gauge

Be given the vector potential,

A(x, y, z) =
(x+ y)êx + (−x+ y)êy√

x2 + y2
.

Find a gauge transformation α(x, y, z), where A → A′ = A − ∇α, such that trans-
formed vector potential satisfies the Coulomb gauge.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_MomentoMagnetico03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_TransformacaoCalibre01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_TransformacaoCalibre02.pdf
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Help: The Laplace operator in cylindrical coordinates has the form,

∆ =
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

∂2

∂z2
+

1

ρ2

∂2

∂φ2
.

where ρ2 = x2 + y2.

4.3.3.8 Ex: Vector potential of a homogeneous field

We consider a homogeneous magnetic field in z-direction,

~B = Bêz .

Invent a potential vector A, such that ~B = rot A. How does the potential vector look
like in the Coulomb gauge (that is, under the condition: div A = 0).

4.4 Multipolar expansion

Using the expansion (2.91) we can expand the vector potential in the same way as we
did with the electrostatic potential in formula (2.92),

A(r) =
µ0I

4π

∮
1

|r− r′|dl
′ =

µ0I

4π

∞∑

`=0

1

r`+1

∮
r′`P`(cos θ′)dl′ . (4.38)

Explicitly,

A(r) =
µ0I

4π

[
1

r

∮
dl′ +

1

r2

∮
r′ cos θ′dl′ +

1

r3

∮
r′2( 3

2 cos2 θ′ − 1
2 )dl′ + ...

]
. (4.39)

4.4.1 Multipolar magnetic moments

Since there are no magnetic monopoles, the first term of the multipolar expansion
will be

∮
dl′ = 0. The next term is the dipole term,

Adip =
µ0I

4πr2

∮
r̂ · r′dl′ . (4.40)

Doing the calculation,

c ·
∮

r̂ · r′dl′ =

∮
c(r̂ · r′) · dl′ =

∫
∇r′ × [c(r̂ · r′)] · dS′ (4.41)

= −
∫

[c×∇r′(r̂ · r′)] · dS′ = − (c× r̂) ·
∫
dS′ = −c ·

(
r̂×

∫
dS′
)
,

for arbitrary constants c, we find,

Adip = − µ0I

4πr2
r̂×

∫
dS′ =

µ0

4π

m× r̂

r2
where m ≡ I

∫
dS (4.42)

is the magnetic dipole moment.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_TransformacaoCalibre03.pdf
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Example 46 (Magnetic moment of a current loop): The magnetic moment
of a conductive coil of radius R lying in the x-y-plane and traversed by a current
is calculated by,

m = I

∫
dS = IπR2êz .

We will show in Exc. 4.4.2.1 how the magnetic dipole moment of a current loop
can also be calculated from a suitable parametrization via the definition,

m = 1
2

∫
r′ × j(r′, t)d3r′ . (4.43)

4.4.2 Exercises

4.4.2.1 Ex: Magnetic moment

Calculate the torque on a rectangular coil with N loops placed in a homogeneous
magnetic field, as shown in the figure.

Figure 4.16: Magnetic moment.

4.4.2.2 Ex: Magnetic moment

a. Determine the magnetic moment of a circular conducting loop with radius R car-
rying a current I1. The loop is in the xy-plane.
b. Now two outer segments of the circle are deformed at a distance a at right angles
to the direction −êz. What is the magnetic moment of the new configuration.
c. Now consider an infinitely long current line I2 at a distance d from the origin and
oriented in z-direction. What is the torque acting on the configurations in (a) and
(b).

4.4.2.3 Ex: Magnetic moment of a cube

A conductor carries the current I = 6 A along the path shown in the figure, which
runs through 8 of the 12 corners of the cube whose length is L = 10 cm.
a. Calculate dipole magnetic moment along the way.
b. Calculate the magnetic induction ~B at the points (x, y, z) = (0, 5 m, 0) and (x, y, z) =
(5 m, 0, 0).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_MagneticMoment01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_MagneticMoment02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_MagneticMoment03.pdf
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Figure 4.17: Magnetic moment.

I

dA x

y
z

Figure 4.18: Magnetic moment.

4.4.2.4 Ex: Magnetic moment of thin circular disk

Consider a very thin disk with radius R, homogeneously charged with the charge Q,
and spinning around the z-axis with angular velocity ω.
a. Parametrize the charge and current distributions.
b. Calculate the magnetic moment.

4.4.2.5 Ex: Magnetic compass

A topographer uses a magnetic compass while standing 6.1 m under a high voltage line
on which flows a current of 100 A. The horizontal component of the Earth’s magnetic
field at this place is 20µT. How large is the magnetic field due to the current at the
position of the compass? Will the magnetic field disturb the compass noticeably?

4.4.2.6 Ex: Torque of a magnetic needle

A magnetic needle has a dipolar magnetic moment µ = 10−2 Am2. Calculate the
torque on the needle due to the horizontal component of the Earth’s magnetic field
at the equator (BH = 4 · 10−5 T), if the magnetic north pole of the needle points in
northeastern direction.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_MagneticMoment04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_MagneticMoment05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_MagneticMoment06.pdf
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4.4.2.7 Ex: Curved conductive circuit

A rectangular conducting loop is deformed in the middle of the edges (length a)
to form a right angle. The conducting loop is traversed by a current I. Calculate
the dipolar magnetic moment m of this configuration. Give the absolute value and
orientation of m.
Help: Use the overlapping principle and replace the above geometry with an overlap
of two conductive loops.

Figure 4.19: Curved conductive circuit.

4.4.2.8 Ex: Magnetic dipole

A magnetic dipole ~µ = µêz is at origin of the coordinate system and has the value
µ = 1 esu · cm. This dipole generates a magnetic field of the form,

~B(r) =
3r(~µ · r)− r2~µ

r5
.

a. At what distance from the origin does the absolute value of ~B take the value
1 esu/cm2 going (i) in z-direction, (ii) in x-direction, and (iii) in a diagonal direction
with in the xz-plane?
b. Which direction does ~B point in these three cases?

4.4.2.9 Ex: Fields of electric and magnetic point dipoles

a. Calculate the field of an electric dipole taking care to remove the divergence in the
center of origin by calculating the field averaged over a sphere and comparing it with
known results.
b. Repeat the procedure of (b) for a magnetic dipole.

4.4.2.10 Ex: Magnetic dipole moment of a rectangular conducting loop

A (ideal) rectangular conducting loop with edge lengths a and b carries a current I.
a. Give the current density distribution j.
b. Calculate the corresponding dipolar magnetic moment ~M.

4.4.2.11 Ex: Dipolar magnetic moment of a rectangular loop

The rectangular conducting loop of Exc. 4.4.2.10 is deformed in the middle of the
edges (length a) to form a right angle (see figure). It is traversed by a current I.
Calculate the dipolar magnetic moment of this geometry.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_MagneticMoment07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_MagneticMoment08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_MagneticMoment09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_MagneticMoment10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_MagneticMoment11.pdf
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4.4.2.12 Ex: Force on the walls of a hollow cylinder

Consider an infinitely long cylindrical shell of radius a in which flows a current. The
magnetic force on this hollow cylinder is such that it tries to compress the cylinder.
To counteract this force, we can fill the inside of the cylinder with a gas of pressure
P . What is the pressure required to balance the magnetic force?

4.4.2.13 Ex: Infinitely dense coil

A coil with N ’infinitely dense’ windings carries a current I. It forms with respect
to the z-axis a torus with rotational symmetry with an inner radius b − a and an
outer radius b + a. The figure shows the cross-sectional area of a cut in the plane
perpendicular to the xy-plane.
a. Calculate by exploiting the symmetric geometry of this device in cylindrical coor-
dinates (ρ, φ, z) a φ-component of the magnetic ~B-field in the xy-plane (that is, for
z = 0) as a function of the distance ρ from the origin of the coordinate system. Help:
Use Stokes’ law.
b. What is the value of the φ-component of ~B in the entire space outside of the torus
(that is, also for z 6= 0).
c. Draw the profile of Bφ(ρ) in the z = 0 plane as a function of ρ.
d. Let a = 1 cm. What should be the value of b in first approximation, so that Bφ in
the torus is constant within 1%? Help: (1± ε)−1 ≈ 1∓ ε.

4.4.2.14 Ex: Magnetic field in a cylindrical hollow space

Parallel to the axis of an infinitely long massive conducting cylinder of radius a at a
distance d from it, there is a hollow cylindrical space of radius b (d + b < a). The
current density within this perforated metal cylinder is homogeneous and oriented
parallel to the symmetry axis. Using Ampère’s law and the linear superposition
principle, determine the absolute value and orientation of the magnetic field inside
the hollow space.

4.4.2.15 Ex: Torque of a conducting cylinder

Determine the torque (per unit length) felt by a massive conducting cylinder of radius

R that slowly rotates with constant angular velocity ω inside a homogeneous ~B-field
around its symmetry axis. ~B be oriented orthogonal to the axis of the cylinder.

4.4.2.16 Ex: Rotating rings

Consider two ’infinitely thin’ concentric rings with radii a and b (a < b). The rings are
in the xy-plane and their common center is at the origin. On the inner ring there is a
homogeneously distributed charge +q (that is, the linear charge density is constant),
and the outer ring carries the homogeneously distributed charge −q.
a. Write down the charge density ρ(r) = ρ(r, φ, z) in cylindrical coordinates.
b. Now the entire device rotates with constant angular velocity ω around the sym-
metry axis z. Determine the resulting current density j(r) = j(r, φ, z) in cylindrical
coordinates, as well.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_TuebH16.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_TuebH17.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_TuebH24.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_TuebH28.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_TuebK4.pdf
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c. What are the Cartesian components of current density j?
d. Calculate the magnetic dipole moment m of the rotating device.

4.4.2.17 Ex: Magnetic field inside a current tube

A thin hollow conducting tube is traversed by a current along its symmetry axis. The
current is homogeneously distributed. Calculate the magnetic field inside and outside
a. from Ampère’s law,
b. from the Biot-Savart law.

4.4.2.18 Ex: Magnetic induction in a hollow conductor

A conductor (ideal and infinitely thin) be on the z-axis and carries a current I flowing
in +z-direction. This conductor is enclosed by a conductive hollow cylinder with ra-
dius R, within which a homogeneously distributed total current I runs in the opposite
direction −z (coaxial cable). Calculate the magnetic induction inside and outside this
device.

4.4.2.19 Ex: Current ring

A (ideal) current ring in the xy-plane with radius a and centered at the origin is
traversed by a current I. In spherical coordinates the current density is given by,

j(r) = j(r, θ, φ) =
I

a
δ(cos θ)δ(r − a)êφ .

For |r| � a the corresponding potential then has the form,

A(r) = A(r, θ, φ) =
Iπa2

cr2
sin θêφ .

and for magnetic field holds,

~B(r) = ~B(r, θ, φ) =
Iπa2

cr3
(2 cos θêr + sin θêθ) .

where êr, êθ, and êφ are the unit vectors in r, θ, and φ-direction.
a. Calculate the Cartesian components of j(r).

b. Calculate the Cartesian components of the dipolar magnetic moment ~M using the
formula,

~M =
1

2c

∫
d3r′(r′ × j(r′)) .

c. What are the components of ~M in r, θ, and φ-direction.
d. Show with the help of (c) that the magnetic field at a point r of the arbitrary
surface can be written,

~B(r) =
3êr( ~M · êr)− ~M

r3
.

e. Calculate the Cartesian components of magnetic field and check, with the help of
(b), that also in Cartesian coordinates holds,

~B(r) =
3r( ~M · r)− r2 ~M

r5
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_MagneticMoment12.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_TuebT14.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_TuebH19.pdf


154 CHAPTER 4. MAGNETOSTATICS

4.4.2.20 Ex: Magnetic field of a long coil

Determine the magnetic ~H-field inside a very long current-carrying coil. The number
of turns is n, the length of the coil l, its radius a, and the amplitude of the current I.
How does the magnetic field change, if the coil has an iron core with the permeability
µ?

4.4.2.21 Ex: Shielded dipolar field

The magnetic field of a dipole is shielded by a hollow sphere (inner radius a, outer

radius b) made of a material with permeability µ. The dipole ~PM is in the center of
the sphere and points towards z.
a. Show that the magnetic field ~H in the entire space can be written as the negative
gradient of a potential ΦM (r).
b. Show that this magnetic potential satisfies the Laplace equation in whole space,
4ΦM (r) = 0.
c. To solve this Laplace equation, do the following ansatz of variable separation,

Φ
(i)
M (r, θφ) =

∞∑

l=0

+l∑

m=−l

4π

2l + 1

[
β

(i)
lmr

l + γ
(i)
lm

1

rl+1

]
Ylm(θ, φ) .

where the β
(i)
lm and γ

(i)
lm be constant and i = I, II, II denote the different regions

(I : 0 ≤ r < a , II : a ≤ r ≤ b , III : b < r). What are the consequences for β
(i)
lm and

γ
(i)
lm due to the fact that ΦM

i. is, in the origin, the potential of a pure dipolar field ~PM?
ii. is cylindrically symmetrical about the z-axis?
iii. disappears at infinity?
d. At the interfaces between the different regions the normal component of the mag-
netic ~B-field and the tangential component of the ~H-field are discontinuous. Use these

conditions to establish a system of equations for the coefficients β
(i)
lm and γ

(i)
lm, using

gradrΦM = ∂ΦM
∂r , gradθΦM = 1

r
∂ΦM
∂θ , ∂Y10

∂θ =
√

2l+1
4π P 1

l (cos θ), as well as the orthog-

onality relations
∫
dΩY ∗l0(Ω)Yl′0(Ω) = δll′ and

∫ +1

−1
dxP 1

l (x)P 1
l′(x) = δll′

2
2l+1

(l+1)!
(l−1)! .

e. Solve the equation system first for the case l 6= 1.
f. Solve the system of equations for l = 1.
g. What does the magnetic field look like outside the sphere for µ� 1?

4.5 Further reading

T. Bergeman et al., Magnetostatic trapping fields for neutral atoms [DOI]

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_TuebT18.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_TuebH23.pdf
http://doi.org/10.1103/PhysRevA.35.1535


Chapter 5

Magnetic properties of matter

The most common manifestations of magnetism are certainly magnets, compass nee-
dles, and the Earth’s magnetic field, and it is not obvious how they are related to the
magnetic fields produced by currents, discussed in the previous chapter. Nevertheless,
all magnetic phenomena are ultimately due to currents, even if they are microscopic,
for example, electrons orbiting atomic nuclei or spinning around their own axis. From
the macroscopic point of view we can treat these circular currents as magnetic dipoles.
Generally, the dipoles of a medium have random orientations, such that the generated
magnetic fields cancel out. However, when we apply a external magnetic field, the
dipoles can realign and magnetize the medium.

5.1 Magnetization

There are several macroscopic manifestations of microscopic dipole moments known
as para-, dia-, and ferromagnetism. We will discuss these in the following sections.

5.1.1 Energy of permanent dipoles and paramagnetism

Figure 5.1: (a) Illustration of the torque exerted by a magnetic field on a magnetic dipole.
(b) An electron spinning around a nucleus may have orbital and intrinsic angular momentum.
(c) Dipole moments are added as vectors.

We consider current loops of rectangular shape 1. In the case of the geometry
shown in Fig. 5.1(a) the Lorentz forces acting on the wire sections a being parallel
to the z-y-plane compensate each other, because the forces and the points on which
they act are all on a straight line. On the other side, the forces acting on the wire
sections b,

F± = ±Ib× ~B = ±IbBêy , (5.1)

1Arbitrary shapes can be constructed by two-dimensional arrays of rectangular loops.
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both contribute to create a torque,

~τ = a
2 × F+ + −a

2 −×F− = IBba× êy = IabBêx sin θ , (5.2)

With the definition of the magnetic moment (4.42) we find,

~τ = m× ~B . (5.3)

We can also calculate the energy of a dipole in a magnetic field by the work
required to rotate it out of its equilibrium position,

Hint =

∫ θ

0

~τ · dθ =

∫ θ

0

m× ~Bdθ =

∫ θ

0

mB sin θdθ = −mB cos θ , (5.4)

such that,

Hint = −m · ~B . (5.5)

The formula (5.3) holds for homogeneous magnetic fields or, alternatively, for almost
point-like dipoles in inhomogeneous fields. It represents the magnetic equivalent of
the torque on electric dipoles (3.4). The torque is oriented so as to align the dipole
moment to the direction of the magnetic field. This mechanism is used to explain the
phenomenon of paramagnetism [see Fig. 5.3(a)].

In atomic physics we learn that electrons bound to atoms may have, besides an
orbital angular momentum due to the planetary motion around the atomic nucleus,
an intrinsic angular momentum called spin as if the electron were a small electrically
charged sphere rotating about its own axis [see illustration of Fig. 5.1(b)]. The spins
of the various electrons in the electron layer of an atom generally couple to form
a total dipole moment, which then interacts with external magnetic fields. This is
called Zeeman effect. The spins may pair and add up or compensate pairwise such as
to zero the magnetic dipole moment of the atom [see illustration of Fig. 5.1(c)]. Note
that a strong external magnetic field can break the angular momentum coupling and
interact with the electron spins separately. This is called Paschen-Back effect.

The phenomenon of paramagnetism is observed in materials whose molecules have
permanent magnetic dipole moments, that is, in chemical elements with unpaired
valence electrons. It is not observed in noble gases, covalent crystals, etc..

Unlike the torque, the force exerted by a homogeneous field on a dipole vanishes,

F = I

∮
dl× ~B = I

(∮
dl

)
× ~B = 0 . (5.6)

For inhomogeneous fields we need to calculate the force from the energy gradient as,

F = −∇Hint = ∇(m · ~B) = m× (∇× ~B) + (m · ∇) ~B = (m · ∇) ~B . (5.7)

This formula can be obtained by Taylor expansion of the magnetic field (see Exc. 5.1.7.1).

5.1.2 Impact of magnetic fields on electronic orbits and dia-
magnetism

A magnetic field can have another effect on the motion of electrons. Let us consider
an electron rotating on a circular orbit of radius R. If the motion of the electron is
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Figure 5.2: Illustration of the force exerted by an inhomogeneous magnetic field on a mag-
netic dipole: A dipole oriented in the same direction as the magnetic field will be drawn to
the field maximum, if it is oriented anti-parallel, it is repelled from the field maximum.

fast, it will generate a current,

I =
−e
T

=
−ev
2πR

, (5.8)

creating a dipole moment,

m = IA =
−e
T
πR2êz =

−e
2
vRêz . (5.9)

Now, the orbit of the electron can be, for example, an atomic orbital or a trajectory
of a free electron in a conductor. The magnetism of a free electron gas in a metal is
treated by the theory of Landau diamagnetism. This theory considers the trajectories
of electrons as being curved by the Lorentz force which, because of the rule of Lenz,
generates a field contrary to the applied magnetic field. That is, the magnetic flux
is expelled from the material. Hence, in inhomogeneous magnetic fields, diamagnetic
materials are repelled from high field regions 2.

Figure 5.3: Classical interpretation of paramagnetism (a) and diamagnetism (b): In para-
magnetic materials the permanent dipoles reorient in the direction of the external field.
Exposed to inhomogeneous fields, the dipoles are thus attracted to field maxima. In dia-
magnetism, currents are forced into circular orbits, and the so-formed dipoles are oriented
in a direction opposite the external external. Exposed to inhomogeneous fields, the dipoles
are thus repelled from the field maxima.

The case of electronic orbitals in atoms is treated by the theory of Langevin dia-
magnetism. In this theory we consider Bohr orbitals of electrons bound to a nucleus
by the Coulomb force. In the presence of an external magnetic field the dipole feels a
torque, but in addition, the field has the effect of accelerating or decelerating the elec-
tron depending on its orientation. To estimate this effect we consider the equilibrium
condition for an electronic orbit,

FC =
1

4πε0

e2

R2
= me

v2

R
= Fcentrifugal . (5.10)

2Note that some metals may be weakly paramagnetic due to an effect called Pauli paramagnetism.
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Adding a magnetic field oriented along the rotation axis 3,

FC + FL =
1

4πε0

e2

R2
+ ev′∆B = me

v′2

R
= Fcentrifugal . (5.11)

Subtracting these equations,

ev′∆B =
me

R
(v′2 − v2) =

me

R
(v′ − v)(v′ + v) ' 2me

R
v′∆v , (5.12)

such that,

∆v =
eR∆B
2me

. (5.13)

The acceleration of the electron, when we switch on the magnetic field, increases the
value of the dipole moment because, with the formula (5.9),

∆m =
−e
2

∆vRêz = −e
2R2

4me
∆ ~B . (5.14)

But the variation is always contrary to the direction of the magnetic field, even if
the dipole moment was initially aligned to the field [see Fig. 5.3(b)] 4. Therefore, the
dipole is repelled by an inhomogeneous magnetic field. Note that changing the sign
of the charge does not affect ∆m.

Diamagnetism is a property of all materials, but is often hidden by the presence of
permanent magnetic moments. Therefore, to observe diamagnetism, one must choose
materials with no permanent magnetic moment, such as atoms with completely filled
electron shells. Many amorphous materials (such as wood, glass, rubber, etc.) and
many metals as diamagnets.

It is worth mentioning that the magnetic behavior of a macroscopic body is not
necessarily the same as the one of its elementary components. For example, metallic
sodium is diamagnetic, while gaseous sodium is paramagnetic.

paramagnetism diamagnetism

atoms with unpaired e− atoms with paired e−

m robust and independent of ~B m weak and m ∝ ~B
~M ‖ ~B y attractive force ~M ‖ − ~B y repulsive force

µ > 1 y χ > 0 µ < 1 y χ < 0

It is also important to note that essential aspects of para- and atomic diamagnetism
are quantum. That is, quantitative theories must be formulated within quantum
mechanics. A classical theory can only give an qualitative picture of the effect.

5.1.3 Macroscopic magnetization

In the presence of a magnetic field, matter becomes magnetized, that is, the atomic
or molecular dipoles align in a particular direction. We have already discussed two

3In Exc. 5.1.7.2 we have shown, that the radius of the electronic orbit does not change under the
influence of an external magnetic field.

4If the charge distribution is spherically symmetric, we can assume 〈x2〉 = 〈y2〉 = 〈z2〉 = 1
3
〈r2〉,

where 〈r2〉 is the average distance between the electron and the nucleus. Therefore, 〈R2〉 = 〈x2〉 +

〈y2〉 = 2
3
〈r2〉. If N is the number of atoms per unit volume, we have χ = µ0Nm

B = −µ0NZe
2

6m
〈r2〉.
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possible mechanisms causing this reorientation, the para- and the diamagnetism. Re-
gardless of the mechanism we measure the degree of alignment by the vector quantity,

~M =
Nm

V
(5.15)

called magnetization. It plays the same role as the polarization in electrostatics. In
the following section we will calculate for a given magnetization ~M the field that it
produces.

In most materials diamagnetism and paramagnetism are very weak effects and
can only be detected by sensitive measurements and strong magnetic fields. In non-
ferromagnetic materials, the weakness of the magnetization allows us to neglect the
magnetic field produced by magnetization. In contrast, in iron, nickel or cobalt the
forces are between 104 and 105 greater.

5.1.4 Magnetostatic field of a magnetized material

We consider a sample of magnetic dipoles. According to the formula (4.42), the vector
potential is given by,

A(r) =
µ0

4π

∑

k

m× (r− r′)

|r− r′|3 −→ µ0

4π

∫

V
dV ′

~M× (r− r′)

|r− r′|3 , (5.16)

where we introduced the dipole moment distribution ~M(r′) via mk → ~MdV ′. As in
the electrostatic case, we can rewrite the integral in the form,

A(r) =
µ0

4π

∫

V
~M(r′)×∇′ 1

|r− r′|dV
′ (5.17)

=
µ0

4π

[
−
∫

V
∇′ ×

~M(r′)

|r− r′|dV
′ +

∫

V

1

|r− r′|∇
′ × ~M(r′)dV ′

]

=
µ0

4π

∮

∂V

~M(r′)× dS′
|r− r′| +

µ0

4π

∫

V

1

|r− r′|∇
′ × ~M(r′)dV ′ .

Comparing these terms with the formula (4.27), we find that the first term looks like
the potential of a surface current, while the second term looks like the potential of a
volume current. Defining,

~κb ≡ ~M× nS and jb ≡ ∇× ~M , (5.18)

we obtain,

A(r) =
µ0

4π

∮

∂V

~κb
|r− r′|dS

′ +
µ0

4π

∫

V

jb
|r− r′|dV

′ . (5.19)

The meaning of this result is that the potential (and therefore the field) of a
magnetized object is the same as the one produced by a volume current distribution
jb plus a surface current distribution ~κb. Instead of integrating the contributions of
all individual infinitesimal dipoles, as in Eq. (5.17), we can try to find these bound
currents, and then calculate the fields they produce, as we did in the previous chapter.
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5.1.5 The H-field

In the previous section we found that the phenomenon of magnetization of a body
can be understood as being due to localized currents inside the material, jb = ∇× ~M,
and on the surface of the body, ~κb = ~M× n̂S . The magnetization field is the magnetic
field produced by these currents. In addition, there are obviously free currents, such
as those generated by the motion of free electrons in a metal.

5.1.5.1 Ampère’s law in magnetized materials

Ampère’s law can now be generalized for arbitrary media,

1
µ0
∇× ~B = j = jb + jf = ∇× ~M+ jf , (5.20)

where ~B is the total magnetic field. Defining a new field ~H, sometimes called magnetic
excitation,

~H ≡ µ−1
0
~B − ~M , (5.21)

we can now write,
∇× ~H = jf . (5.22)

The field ~H is that part of the magnetic field, which comes only from free currents.
We can also define the magnetic susceptibility χµ via 5,

~M = χµ ~H , (5.23)

or the permeability µ via,

~B = µ ~H = µ0(1 + χµ) ~H . (5.24)

Note, that the divergence of the magnetization does not necessarily vanish, since
the susceptibility may depend on position, χµ = χµ(r),

∇ · ~H = µ−1
0 ∇ · ~B −∇ · ~M = −∇ · (χµ ~H) 6= 0 . (5.25)

Hence, ~H generally can not be derived from a vector potential, and Biot-Savart’s
law is not valid for ~H. In anisotropic materials the susceptibility and the permeability
must be understood as tensors.

5.1.5.2 Boundary conditions involving magnetic materials

The integral version of Eq. (5.25),
∮
~H · dS = −

∮
~M · dS, allows us to determine the

behavior of the magnetic excitation near interfaces,

H⊥top −H⊥bottom = −M⊥top +M⊥bottom . (5.26)

On the other hand Ampère’s law, ∇× ~H = jf , yields,

~H‖top − ~H‖bottom = ~κf × n̂ . (5.27)

This is in contrast to the behavior of the magnetic ~B field at interfaces described by
Eqs. (4.30), (4.32), and (4.34). Do the Excs. 5.1.7.7 to 5.1.7.9.

5Note, that this definition is not symmetric with that of the electric susceptibility (3.20).
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5.1.6 Magnetic susceptibility and permeability

Materials respond to applied magnetic fields ~H generating a magnetization ~M, such
that the total magnetic field is ~B = µ0

~H+µ0
~M. The behavior of a material depends

on the value of its susceptibility. In vacuum χµ = 0, for typical diamagnets χµ . 0,
for superconductors χµ = −1, for paramagnets χµ & 0, and for ferromagnets χµ � 1.

Typical values are listed in the following table:

material χµ[10−5] type of magnetism

superconductor −105 dia-

carbon −2.1 Langevin dia-

copper −1 Landau dia-

water −0.9 Langevin dia-

hydrogen −0.00022 Langevin dia-

oxygen (gas) 0.2 para-

sodium (metal) 0.7 Pauli para-

magnesium 1.2 Pauli para-

lithium 1.4 Pauli para-

cesium 5.1 Pauli para-

platinum 28

oxygen(liquid) 390

gadolinium 48000 ferro-

iron ferro-

5.1.6.1 Linear media

In many materials, as long as the applied magnetic field is not too strong, the magne-
tization is proportional to the field, ~M∝ ~B, i.e. the magnetic susceptibility depends
on the material’s microscopic properties and external factors, such as temperature,
but not on the applied field, χµ 6= χµ( ~B). Hence, linear media can be characterized
by a constant,

µr ≡
µ

µ0
, (5.28)

called relative permeability.

5.1.6.2 The role of temperature in paramagnetism

Experiments show, that in inhomogeneous magnetic fields, paramagnetic materials
are attracted toward high field regions, but with a force that decreases with tempera-
ture. This is understood by the Zeeman effect: The dipole moment can only adopt a
few possible (quantized) values corresponding to levels of well-defined positive or neg-
ative energy (called Zeeman sub-levels). At high temperature all Zeeman sub-levels
are equally populated, such that the total force cancels. At low temperature the pop-
ulations are distributed according to Boltzmann’s law, nk/nl = e−(Ek−El)/kBT , that
is, the lower levels (which are precisely the high-field seekers) dominate.
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Example 47 (Paramagnetism of hot samples): As an example, we consider
atoms with two possible orientations for the permanent magnetic moment, m ·
~B = ±mB. The magnetization produced by n = n+ + n− atoms is then ~M =
n+m+ + n−m−. The two orientations are populated according to Boltzmann’s
law n+/n− = e−2mB/kBT , such that,

~M
n

=
emB/kBT − e−mB/kBT

emB/kBT + e−mB/kBT
m ' mB

kBT
m .

For weak fields, we obtain the Curie law,

χµ =
M

H
' nm2B
kBTH

' µ0nm
2

kBT
∼ T−1 .

For strong fields, the magnetization saturates. Assumingm ' µB (see Exc. 5.1.7.4),

we estimate for a metal with n ≈ 1022 cm-3 at room temperature, χµ ≈ 2.6 ×
10−4 6.

5.1.6.3 Ferromagnetism

In a linear medium the alignment of the magnetic dipoles is maintained by the ap-
plication of an external field. There are, however, magnetic materials that do not
depend on applied fields. This phenomenon of ’frozen’ magnetization is called ferro-
magnetism. As in the case of paramagnetism, ferromagnets develop dipoles associated
with the spins of unpaired electrons, but in addition, the dipoles strongly interact with
each other and, for reasons that can only be understood within a quantum theory,
like to orient themselves in parallel 7.

The correlation is so strong that within regions called Weiss domains almost 100%
of the dipoles are aligned. On the other hand, a block of ferromagnetic material
consists of many spatially separated domains, each domain having a magnetization
pointing in a random direction, such that the block as a whole does not exhibit
macroscopic magnetization. Inside a Weiss domain the magnetization is so strong that
even a strong external magnetic field can not influence the alignment. On the other
hand, at the boundaries between Weiss domains the alignment is not well defined,
such that the external field can exert a torque τ = m× ~B shifting the boundaries in a
way to favor those domains, which are already aligned. For a sufficiently strong field
one domain will prevail and the ferromagnetic material saturate.

Experiments show that the alignment is not fully reversible, that is, not all Weiss
domains return to their initial orientation (before the external magnetic field was

6In metals free electrons contribute to paramagnetism. In metals the Curie law does not apply,
but χ is found to be almost constant. The reason is, that the Boltzmann distribution is inappropriate
for electrons, so we need to use the Fermi-Dirac distribution. The energy distribution ρ(ε)nFD(ε)
of the electrons depends on the orientation of their spin with respect to the applied magnetic field:
electrons with (anti-)parallel spin see their energy increased (reduced). To maintain a uniform EF ,
electrons with parallel spin will flip it to antiparallel spin, such that the entire system is slightly high-
field seeking. This is called Pauli paramagnetism. This effect always competes with diamagnetism,
which involves all electrons and has opposite sign.

7The survival of domains in thermal reservoirs can not be understood by classical interactions
between dipoles, but we need to contemplate band structure models. In particular, the 3d orbital
bands provide electrons to the ferromagnetic elements Fe, Co, Ni. These bands are so close that
the exchange interaction influences the orientation of spins in neighboring bands, which induces
correlations between the spins of neighboring atoms.
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applied). Consequently, the material remains permanently magnetized. This effect is
called remanescence.

Figure 5.4: Hysteresis curve of magnetization. To allow for a comparison of the scales we
plot in real units (Tesla) the applied field ( ~H ∝ I in the case of a solenoid) versus the
obtained field ( ~B ' ~M).

To compensate for remanescence, it is necessary to apply a compensation field
oriented in the opposite direction (see Fig. 5.4) 8 Beyond the compensation field we
observe saturation in the opposite direction. Finally, returning to the initial situation,
we draw a curve called hysteresis curve, which indicates that magnetization does not
only depend on the applied magnetic field, but also on the ’history’ of applied fields.
Fig. 5.4 shows how an applied field can be dramatically amplified by ferromagnetism.

As already discussed, temperature tends to randomize the alignment of atomic
dipoles. At low temperature the heat will not be sufficient to misalign the dipoles
within the Weiss domains. But interestingly, beyond a well-defined temperature (the
Curie temperature of iron is 770 C), the iron undergoes an abrupt phase transition to
a paramagnetic state.

Note, that there are also antiferromagnetic materials (MnO2), where neighboring
atoms have antiparallel spins.

Example 48 (Microscopic theory of induced dipoles): The permittivity
and relative permeability of a dense gas can be connected to the microscopic
quantities through the Clausius-Mossotti formula,

εr =
1 + 2

3
N
V
αpol,e

1− 1
3
N
V
αpol,e

, µr =
1 + 2

3
N
V
αpol,m

1− 1
3
N
V
αpol,m

, (5.29)

that is, to the susceptibilities,

χε = εr − 1 =
N
V
αpol,e

1− 1
3
N
V
αpol,e

, χµ = µr − 1 =
N
V
αpol,m

1− 1
3
N
V
αpol,m

, (5.30)

where the induced electric and magnetic polarizabilities are,

αpol,e =
2dfi

|~Ep|
ρif , αpol,m =

2mfi

| ~Bp|
ρif . (5.31)

dfi and mfi are the dipole moments for electric and magnetic transitions and
ρif the coherences excited in these transitions, which can be calculated from

8In practice, to demagnetize an iron block, we apply an alternating voltage gradually reducing
its amplitude.
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the Bloch equations. The relative strength between magnetic and electrical
transitions is,

2µB

ceaB
= α . (5.32)

5.1.7 Exercises

5.1.7.1 Ex: Dipole in an inhomogeneous field

Derive the formula for the force on a dipole in an inhomogeneous field.

5.1.7.2 Ex: Langevin diamagnetism

An electron circulates around its atomic nucleus on an orbit of radius R.
a. Calculate the magnetic dipole moment generated by this movement as a function
of velocity.
b. Now a weak magnetic field ~B is slowly turned on perpendicular to the orbital plane.
Calculate the increase of the electron’s velocity due to the electric field induced by
turning on the magnetic field using Faraday’s law.
c. Show that the increase in kinetic energy, ∆Ekin, corresponds to the interaction
energy between the electronic dipole moment and the magnetic field.
d. Does the turning on of the magnetic field change the radius of the electronic orbit?
Justify your answer!

5.1.7.3 Ex: Magnetic susceptibility

By molecular magnetism it is possible to lift any objects in a sufficiently strong mag-
netic field. Estimate the magnetic field | ~B| and the field gradient ∇| ~B|2 (one may

estimate ∇| ~B|2 = 2| ~B|∇| ~B| ' | ~B|2/l with l ' 10 cm as the typical length for such
strong magnetic fields), needed to lift a frog. Water is predominantly diamagnetic
with χµ ' −0.9 · 10−5 is the magnetic susceptibility of water.
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Figure 5.5: Magnetic susceptibility.

5.1.7.4 Ex: Larmor precession of a Bohr atom in a magnetic field

As a model of the Larmor precession, consider the Bohr’s atom model: An electron
flying on circular orbits around a proton. Only certain discrete orbits with the radii

rn = n2aB, where aB = 4πε0
~2

mee2
, are allowed. The movement of the electron on

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_ForcaInhomogenea01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_DiaMagnetismo01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_MagnetizaMedia01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_MagnetizaMedia02.pdf
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these orbits is not accompanied by radiative emission.
a. Calculate the velocity of the electron in its ground state n = 1 and compare the
result with the speed of light in vacuum c.
b. What is the orbital momentum L of the electron in a hydrogen atom in this state?
c. Relate the magnetic moment mL due to the circular current generated by the
electron to the orbital momentum L.
d. Placed in a magnetic field of B = 1 T the atom suffers a torque, which creates
a precession of the angular momentum vector L around the direction of the ~B-field.
Determine the frequency of this Larmor precession from ωL = L̇/(L sin θ), where θ

is the angle between mL and ~B. (~ = 1.034 · 10−34 Js, e = 1.602 · 10−19 C, ε0 =
8.854 · 10−8 As/Vm.

5.1.7.5 Ex: H-field of a cylindrical current wire

A cylindrical wire with radius a and permeability µ is traversed by a constant current
density j.
a. Calculate the absolute values and the directions of the ~H and ~B-fields in- and
outside the wire using Stokes law.
b. The electric field ~E within the wire and the current j are connected by Ohm’s law
j = σ~E , where σ is the electrical conductivity. What is the value and direction of the
Poynting vector s on the wire surface?
c. Calculate the total energy flow across the surface of a piece of wire of length L.
Show that the energy flow corresponds exactly to the power converted, in this piece
of wire, to ohmic heat.
Help: The energy conservation law of electrodynamics is given by: −∂u∂t = ∇·s+j · ~E ,

where u = 1
2 (~E · ~D + ~B · ~H) is the total energy density, s = ~E × ~H the flow of energy,

and j · ~E the work done by the field on the electric current density.

5.1.7.6 Ex: Ferromagnetism

a. Make a scheme of the dependence of the magnetization M of a ferromagnetic
material on the magnetic ’excitation’ H with the initial condition M = H = 0 and
letting H(t) cycle through 0 → Hmax → −Hmax → Hmax. Indicate the remaining
magnetization in the scheme.
b. How does the magnetization of a ferromagnet change when we heat it up above
the Curie temperature TC? How does the magnetic susceptibility behave in this case
χm?
c. It explains the order of the atomic magnetic moments in ferro-, antiferro- and
ferrimagnets and its influence on their magnetization.

5.1.7.7 Ex: Rectangular toroidal coil

A circular coil is made of a core with rectangular cross-sectional area, A = h(r2− r1),
on which two coils are densely wound on top of each other, one with the number of
turns N1 and the other with N2. Establishes a relationship for the mutual inductance
L of the two coils.
Help: To calculate the mutual inductance, invoke the flux equation for the case that

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_MagnetizaMedia03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_MagnetizaMedia04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_BobiToroide01.pdf
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the coil N1 is traversed by the current I1, that is,
∮
H · ds = N1I1 and calculate the

induced flux Φ.

Figure 5.6: Rectangular toroidal coil.

5.1.7.8 Ex: Toroidal coil

Consider a toroidal coil with the average radius R, which consists of N turns carrying
the current I. The coil is filled with an iron core of permeability µ.
a. Calculate the amplitude of the fields H and B inside the coil.
b. Now consider a core with an air gap d with d� R interrupting the torus. Calculate
once again the fields H and B within the slot.

5.1.7.9 Ex: Toroidal coil

A slotted steel ring has the dimensions: b = 20 mm, r = 80 mm, a = 15 mm, and
d = 1 mm (see the figure).
a. Calculate, first without air gap, for a magnetic flux density B the total magnetic
flux ΨM and the corresponding H field. What is the amount of current I required
generate this flux in a coil of N turns?
b. How must H and I be modified, if the ring is interrupted by a 1 mm wide air gap,
to reach the same flux? Use B = 1.2 T, N = 300, µr = 650.

d

a

b R

Figure 5.7: Toroidal coil.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_BobiToroide02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_BobiToroide03.pdf
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5.2 Induction of currents and inductance

We have already seen that the fundamental cause of current j is a motion of charges
Q [see Eq. (3.37)]. To incite charges to move we need a force,

j = ς
F

Q
, (5.33)

where ς is a proportionality factor called conductivity and F is the Coulomb-Lorentz
force, such that,

j = ς(~E + v × ~B) . (5.34)

The first part, j = ς ~E , is Ohm’s law already discussed in Sec. 3.3. Now, in addition
to taking into account the Coulomb force acting on electrons traveling in conductors,
let us also consider the Lorentz force.

5.2.1 The electromotive force

When we consider a closed electric circuit with a current source and a consumer, know-
ing the slow average velocity of the electrons carrying the current (see Exc. 3.3.3.5),
it is not immediately obvious why the current starts to flow simultaneously in all
parts of the circuit. The explanation is that if this were not the case, charges would
accumulate in parts of the circuit creating local imbalances. The consequence of this
would be the creation of electric fields working to eliminate the imbalances. These
fields ~E are superposed to the electromotive force f0 exerted by the current source.
If the source has an internal resistance, as schematized in Fig. 5.8(a), part of the
electromotive force fi is spent on it,

fi = f0 + ~E . (5.35)

Figure 5.8: (a) Illustration of the electromotive force f0 exerted by an arbitrary voltage
source, the force fi spent on the internal resistance of the source, and the electrostatic force
~E on the circuit. (b) Electromotive force f0 generated by the motion of a part of the circuit
inside a magnetic field.

In the case of an ideal source, fi = 0, the path integral along the circuit,

E ≡
∫ −

+

f0 · dl = −
∫ −

+

~E · dl = U , (5.36)

yields exactly the voltage.
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The electromotive force can be caused by batteries, photocells, generators, etc. In
the case of a generator, the electromotive force is the Lorentz force acting on the free
charges of a conductor moved within an applied magnetic field. Let us consider the
setup schematized in Fig. 5.8(b). When the part of the conductor between the points

A and B (length h) is moved to the right with velocity v within the magnetic field ~B,
positive charges are accelerated upwards, as in the case of the Hall effect. We obtain
an electromotive force,

E ≡
∮

fL · dl = hvB , (5.37)

which acts as a source of voltage. Of course, it is not the magnetic field which does
the work through the Lorentz force, but the person pushing the conductor: Calling
u the velocity along the conductor acquired by the accelerated charges, this velocity
creates inside the magnetic field an electromotive force u × ~B against the motion of
the conductor exerting per unit of charge the work,

∫
fpull · dlw = −

∫
(u× ~B) · dlw =

∫
uBêx · dlw (5.38)

=

∫ h

0

v

tan θ
B cos(90◦ − θ) dh

cos θ
= hvB = E .

We find that the work exerted per unit of charge exactly compensates the electro-
motive force.

Applying the definition of the magnetic flux (4.12), to the situation illustrated in
Fig. 5.8(b),

ΨM =

∫
~B · dS = Bhx , (5.39)

we can reshape the Eq. (5.37),

hBv = −hBẋ = −dΨM

dt
= E . (5.40)

Hence, the temporal variation of the magnetic flux induces a counteracting electro-
motive force. This is known as Lenz’s rule.

5.2.2 The Faraday-Lenz law

In a series of experiments Michael Faraday demonstrated that the relationship (5.40)
can be generalized to any geometry of the circuit immersed in a magnetic field, to
any velocity of the motion, and even to time-varying geometries. The applications
of this effect are innumerable, see Exc. 5.2.3.1 to 5.2.3.23. Relating the electromotive
force on one side to the generation of a voltage (5.36), E =

∮
~E · dl, and on the other

side to the variation of the flux (5.40), E = −dΨM
dt , we can write,

∮
~E · dl = − ∂

∂t

∫
~B · dS . (5.41)
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In the differential version we get,

∇× ~E = −∂
~B
∂t

. (5.42)

Note that, without temporal variations of the magnetic field, we recover electrostatics,
∇× ~E = 0.

5.2.2.1 Mutual inductance

Figure 5.9: Indução.

Here, we consider two loops of arbitrary shapes. The first loop carries the current
I1 and produces a magnetic field, which we can calculate, for example, by Biot-Savart’s
law,

~B1 =
µ0I1
4π

∮
dl1 × (r− r′)

|r− r′|3 . (5.43)

The part of the magnetic flux passing through the second loop is,

ΨM2 =

∫
~B1 · dS2 ≡M21I1 , (5.44)

where M21 is a constant that depends only on the geometry of the two loops. It is
called mutual inductance and can be expressed as,

M21 =
1

I1

∫
∇×A1 · dS2 =

1

I1

∮
A1 · dl2 (5.45)

=
1

I1

∮ (
µ0I1
4π

∮
dl1
|r− r′|

)
· dl2 =

µ0

4π

∮ ∮
dl1 · dl2
|r− r′| .

The symmetry of this formula suggests,

M21 = M12 = M . (5.46)

We can drop the indices and call both constants M . The conclusion of this is that,
regardless of the shapes and positions of the loops, the flux through loop 2 when we
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throw a current I into the loop 1 is identical to the flux through 1 when we throw
the same current I into 2,

I1 = I2 = I =⇒
∫

~B1 · dS2 =

∫
~B2 · dS1 . (5.47)

Example 49 (Dynamo): We consider a rotating coil set in motion by a crank
inside a magnetic field, as shown in the figure. The voltage wasted by the resistor
is,

U =

∮
~E · dl = − d

dt
ΨM = − d

dt

∫
~B · dA = − d

dt
BA cosωt = ωBA sinωt .

Figure 5.10: Schematic of a generator of alternating voltage (or dynamo).

5.2.2.2 Self-inductance

The magnetic flux produced by the current in loop 1 not only traverses the second
loop, but also the first loop itself. Therefore, any variation of the flux will also induce
an electromotive force in this loop 1,

ΨM1 = M11I1 ≡ LI1 , (5.48)

where the constant L is called self-inductance. With the law of Lenz-Faraday,

E = −dΨM

dt
= −Lİ . (5.49)

Example 50 (Self-inductance of a solenoid): Consider the solenoid shown
in Fig. 5.11. With the formula of the example 49 we calculate the magnetic flux,

ΨM =

∫
~B · dA = µI

N

l
NπR2 .

Comparing with the formula (5.48), we find self-inductance,

L = µ
N2

l
πR2

5.2.3 Exercises

5.2.3.1 Ex: Application of the Faraday-Lenz law

The current in a coil characterized by the inductance L = 1 mH is linearly reduced in
one second from 1 A to 0. Calculate the induced voltage.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz01.pdf
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Figure 5.11: Scheme of a solenoid characterized by a self-inductance L.

5.2.3.2 Ex: Breathing charge distribution

A radially symmetric charge distribution varies over time as λ(t) in a ’breathing
oscillation’,

%(r, t) = %0λ(t)
1

r2
e−aλ(t)r ,

where %0 = const. and a = const.
a. What is the value of the total charge?
b. Calculate the current density j(r, t), which corresponds to %(r, t) from the continuity
equation.
c. Determine ~E(r, t) from the ansatz ~E(r, t) = E(r, t) r

r (radial symmetry).

d. Calculate the corresponding magnetic field ~B.
e. Show that the solutions for ~E and ~B satisfy Maxwell’s equations.

5.2.3.3 Ex: Law of induction

a. Explain the concept of magnetic flux across an area F . How does magnetic flux
depend on the choice of surface?
b. What is the form of Faraday’s induction law? What are the experimental observa-
tions underlying this law?
c. What is the physical content of Lenz’s law?
d. What is Maxwell’s displacement current? Give a physical justification for this cur-
rent.
e. Write down Maxwell’s equations.
f. What is the motivation for introducing the electromagnetic potentials Φ and A?
g. What is the allowed gauge transformation for electromagnetic potentials?
h. What is the meaning of the Lorentz gauge? What advantages does it offer?
i. Formulate the energy conservation law of electrodynamics.
j. What is the physical meaning of the Poynting vector?

5.2.3.4 Ex: Induction and Lorentz force

Two parallel metal rods are tilted by an angle ϕ with respect to the ground (see
diagram). Between the rods a third movable rod of mass m and length L placed at

right angles glides without friction. A homogeneous magnetic field ~B crosses perpen-
dicularly the plane defined by the three rods. The parallel rods are connected at the
top end by a capacitor C, such that a closed current circuit is formed together with
the transverse rod.
a. Set up the equation of motion for the transverse rod.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz01b.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz03.pdf
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b. Determine the solution x(t) of the equation of motion for the initial condition
x(0) = v(0) = 0.

�

C B

L

m

x

Figure 5.12: Induction.

5.2.3.5 Ex: Magnetic flux and induction

Consider the conductive ring of radius l and negligible electrical resistance shown in
the figure. Perpendicular to the plane of the ring there is a homogeneous magnetic
field ~B. A rod 2 rotates with angular frequency ω. Calculate the current I across the
resistance R of another resting rod 1.

Figure 5.13: Induction.

5.2.3.6 Ex: Induction

Consider the conductive loop at right angle shown in the figure. There is a homoge-
neous magnetic field given by,

~B(r) = B0êy .

The conductive loop rotates around the bending axis (z-axis) with constant angular
frequency.ω.
a. What is the voltage induced in the loop as a function of time?
b. Calculate the time average of the induced voltage.

5.2.3.7 Ex: Induction

A circular ring with radius R rotates with constant angular velocity ω around a
diameter. Perpendicular to the rotation axis there is a magnetic field ~B.
a. Calculate the voltage induced in the ring as a function of time.
b. The ring consists of a metallic wire with conductivity σ. What current I(t) flows
through the ring, assuming the current is evenly distributed across the cross section
of the wire?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz06.pdf
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�
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xy

h

a a

Figure 5.14: Induction.

5.2.3.8 Ex: Induction

An equidistant triangle-shaped conductive loop (edge length S) in the xy-plane is
’immersed’ with constant velocity v = vêx starting at the tip into a homogeneous
magnetic field ~B = Bêz (B is constant) (see diagram) until being completely inside
the magnetic field.
a. Calculate the maximum voltage induced in the loop.
b. Make a scheme of the time evolution of the induced voltage.

 
a) Geben Sie zuerst die Ladungsdichte ),,()( zrr ϕρρ =

r  in Zylinderkoordinaten an. 
Lassen Sie nun die gesamte Anordnung mit konstanter Winkelgeschwindigkeit ω um ihre 
Symmetrieachse (d. h. die z-Achse) rotieren. Geben Sie die resultierende Stromdichte 
ebenfalls in Zylinderkoordinaten an.  
(Hinweis: , wobei )()()( rvrrj rrrrr

⋅= ρ )(rv rr  die Geschwindigkeit am Ort rr  ist.) 
 
b) Bestimmen Sie durch explizite Rechnung das magnetische Dipolmoment 

∫ ×= )(
2
1 3 rjrrdm rrrr  der rotierenden Anordnung. 

 
 
Aufgabe 5: Potenziale      (5 Punkte) 
 
Es seien je ein Skalar- und ein Vektorpotenzial gegeben: 
 

tiz e
r
erbtr ω
3

ˆ
),(

r
r

=Φ    und z
ti

ikr

ee
r

eikbtrA ˆ),( ω=
rr , 

 
wobei ck=ω und rr r

=  gelten soll. 

Berechnen Sie das zugehörige elektrische Feld ),( trE rr
und die magnetische Induktion ),( trB rr

. 
 
 
Aufgabe 6: Induktion       (5 Punkte) 
 
Eine Leiterschleife in Form eines gleichseitigen Dreiecks 
(Seitenlänge S)  in der xy – Ebene wird mit konstanter 
Geschwindigkeit xevv rr

=       (v ist konstant) und Spitze voran in ein 

homogenes Magnetfeld zeBB rr
=  (B nt) „getaucht“ (siehe 

Abbildung), bis sie sich vollständig im Magnetfeld befindet. 
 

ist konsta

) Berechnen Sie die maximale Spannung, die in der Leiterschleife induziert wird (4 Punkte). 

Aufgabe 7: zirkulare Polarisation     (6 Punkte) 

Das elektrische Feld einer zirkular polarisierten el.magn. Welle im Vakuum ist durch 

 
a
b) Skizzieren Sie den zeitlichen Verlauf der induzierten Spannung (1 Punkt). 

 
 
 

 

[ ])cos(ˆ)sin(ˆ),( 0 tkzetkzeEtrE yx ωω −+−=
rr

 
gegeben. 

n Sie den zugehörigen Wellenzahlvektor k
r

a) Gebe  an (1 Punkt). 
b) Berechnen Sie die zugehörige magnetische Induktion ),( trB rr

(2 Punkte). 
c) Berechnen Sie den Poyntingvektor ),( trS rr (2 Punkte). 
d) Der Energiefluss der el.magn. Welle betrage 10 W/m². Berechnen Sie die Amplituden 

des elektrischen Feldes und der magnetischen Induktion (1 Punkt). 

 2

Figure 5.15: Induction.

5.2.3.9 Ex: Induction

A rectangular conducting loop with height 2a and width 2b rotates with angular
velocity ω around the z-axis. At time t = 0 the conducting loop is in the xz-plane.
In addition, the loop is exposed to the inhomogeneous time-varying magnetic field
~B(r, t) = B0tz

2êx.

a. Show, ∇ · ~B(r, t) = 0.

b. Calculate the magnetic flux Ψ(r, t) =
∫
~B · dF through the rotating loop as a

function of time.
c. What is the value of the voltage Uind(t) induced in the loop as a function of time?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz08.pdf
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-a

a b-b

z

x0

Figure 5.16: Induction.

5.2.3.10 Ex: Induction in a coil

Calculate the magnetic B-field in the middle and at the end of a coil of length L = 1 m.
The number of turns is N = 2000, the radius r = 2 cm, and the current through the
coil I = 5 A. To do this first calculate, using the Biot-Savart law, the magnetic field
B1(0, 0, z) of a single circular conductor with radius r located at a point z1 of the
coil’s symmetry axis. Use the formula obtained for B1 to describe the magnetic field
generated by a coil element dz.

5.2.3.11 Ex: Induction in a rectangular mesh

A rectangular conducting loop has the length a and the width b. In the same plane
defined by the loop, parallel to a distance d is a straight conductor traversed by a
current I, as shown in the figure.
a. Calculate the magnetic field produced by the current.
b. Calculate the flux through the loop.
c. Calculate the self-inductance imposed on the current circuit by the existence of the
loop.
d. Linearize the expression of self-inductance for b/d� 1.

⋆ Hausaufgabe 4 (Induktion auf Rechteckschleife)

Eine rechteckige Leiterschleife hat die Länge a und die Breite b.
In einer Ebene mit ihr verläuft im Abstand d parallel ein gerader
Leiter. Sein Strom I erzeugt das Magnetfeld

~B =
mu0

2π

I

ρ
êφ .

Die Induktion ist definiert durch

Uind = −Lİ ,

B( )f

I

d b

a

und die in der Leiterschleife induzierte Spannung Uind hängt mit dem magnetischen Fluss
Φ durch sie über das Faradaysche Induktionsgesetz

Φ̇ = −Uind

zusammen.
a) Zeigen Sie, dass die Induktion

L =
mu0

2π
a ln

(
1 +

b

d

)
(1)

ist.
b) Für Abstände d = 10 m, Länge a = 1 m und Breite b = 1 cm ist b/d ≪ 1 und der
Logarithmus kann linearisiert werden. Führen Sie die entsprechende Taylor-Entwicklung
durch und geben Sie für diesen Fall den Zahlenwert für 2πL/µ0 an.

Abgabe: Montag, 30.7.2008 um 12h, Kasten im Eingangsbereich D-Bau.
Bitte Namen und Übungsgruppe deutlich auf dem Blatt vermerken!!
http://www.pit.physik.uni-tuebingen.de/Courteille/Uebungen.htm

Figure 5.17: Induction.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz10.pdf
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5.2.3.12 Ex: Falling rod

A metal rod of L = 1 m length falls in the gravitational field of the Earth. At time
t = 0 the initial velocity is 0. The rod is oriented parallel to the ground. Perpendicular
to the rod and parallel to the ground there is a magnetic field ~B with the absolute
value 2 · 10−5 T.
a. What voltage is induced between the ends of the rod as a function of the distance
traveled h?
b. What value is obtained for the voltage after a fall of 5 m?

Probeklausur im Integrierten Kurs Physik II, SS 2008, 30.06.2008 
besprochen in den Präsenzstunden 11 und 12 

 
 
Aufgabe 1: Schaltung mit zwei Batterien    (8 Punkte)  
 
Zwei Batterien 1 und 2 (Spannungen 
U1=2 V und U2 = 0.5 V, sowie drei 
Widerstände R1 = R2 = R3 = 1 Ω sind wie 
in der Abbildung geschaltet.  
a) Welche Ströme fließen durch die 
Widerstände R1, R2 bzw. R3? 
b) Wie groß ist der Spannungsabfall 
zwischen den Punkten A und B? 
 

R1

R2

U1

U2

R3

A B

 
 
Aufgabe 2: Induktiver Schaltkreis          (8 Punkte) 
 
Wir betrachten eine Reihenschaltung aus einer langen 
Spule, einer Spannungsquelle (Spannung U) und einem 
ohmschen Widerstand R = 100 Ω. Die Spule hat 50 
Windungen pro cm und eine Induktivität von 200 mH. 
Für Zeiten t < 0 fließe kein Strom durch die Spule. Zur 
Zeit t = 0 werde die Spannung schlagartig von 0 auf 10 V 
erhöht.  
Nach welcher Zeit erreicht das Magnetfeld in der Spule 
π⋅10-4 T?  
 

 

R

LU

 
 
Aufgabe 3: Fallender Stab       (6 Punkte) 
 
Ein metallischer Stab (Länge L = 1 m) fällt im 
Gravitationsfeld der Erde (Bei t = 0 sei die 
Anfangsgeschwindigkeit 0). Der Stab sei parallel zum 
Erdboden orientiert, senkrecht zum Stab und parallel zum 
Erdboden herrsche das Magnetfeld B

r
 (Betrag: 2⋅10-5 T).  

 

v

B

Welche Spannung wird zwischen den Enden des Drahtes in Abhängigkeit von der Fallstrecke 
h induziert?  
Welchen Spannungswert erhalten Sie nach einem Fall von 5 m? 
 
 
Aufgabe 4: Leitende Kreisringe     (8 Punkte) 
 
Gegeben seien zwei "unendlich dünne", leitende, konzentrische Ringe mit Radien a und b (a 
< b). Die Ringe sollen in der xy-Ebene liegen und ihren gemeinsamen Schwerpunkt im 
Ursprung haben. Auf dem inneren Ring möge sich homogen verteilt (d. h. mit konstanter 
Streckenladungsdichte) die Ladung +q, auf dem äußeren homogen verteilt die Ladung -q 
befinden. 

 1

Figure 5.18: Induction.

5.2.3.13 Ex: Sliding rod

We consider two parallel metal rails (distance d = 10 cm) inclined by an angle φ with
respect to the ground. Between the rails slides a frictionless rod (mass M = 100 g).
At a right angle to the plane defined by the rails there is a homogeneous magnetic
field B (amplitude: 0.1 T). We sent a current of I = 9.8 A through the rails and
through the rod. What is the maximum allowable value of φ necessary to let the rod
move upward along the rails?

Universität Tübingen SoSe 2008
Hausaufgaben zum Integrierten Kurs Physik II Blatt 10
23.7.2008

⋆ Hausaufgabe 1 (Gleitender Stab)

Gegeben Seien zwei parallele metallische Stangen (Ab-
stand d = 10 cm), die einen Winkel φ zum Erdboden
einnehmen. Zwischen den Stangen gleite reibungsfrei
ein beweglicher Stab (Masse M = 100 g). Im rechten
Winkel zu den Stangen liege ein homogenes Magnetfeld
~B (Betrag: 0.1 T) an. Wir schicken jetzt einen Strom
I = 9.8 A über den Stab von einer Stange zur anderen.
Wie groß darf φ höchstens sein, damit der Stab entlang
der Stangen nach oben gleitet?

I I

I

v

d

x

z

B
v

g

f

Hausaufgabe 2 (Koaxialkabel)
Ein Koaxialkabel besteht aus einem geraden zylindrischen Leiter vom Radius a und einem
dünnen zylindrischen Hohlleiter vom Radius b > a. Zwischen den Leitern bestehe eine
Spannungsdifferenz U , und in ihnen fließen entgegengesetzte Ströme I. Berechnen Sie den
Poyntingvektor im Hohlraum und die durch den Kabelquerschnitt transportierte Leistung.
Hinweis: Berechnen Sie das elektrische Feld zwischen den Leitern mit dem Gaussgesetz
(siehe auch Hausaufgabe 1 in Blatt 6) und das Magnetfeld zwischen den Leitern mit dem
Amperschen Durchflutungsgesetz.

⋆ Hausaufgabe 3 (Mathe: komplexe Zahlen)
Lösen Sie folgende Gleichungen für z = a + ib eine komplexe Zahl:

z

1 + i
− z

1− i
= 1 + (z − z̄) sin(π + i ln 3) , − 2iz =

1 + z̄

1 + i
.

Berechnen Sie Betrag, Real- und Imaginärteil von

2i− 1

i− 2
, (1 + 2i)3 ,

3i

i−
√
3
.

Figure 5.19: Sliding rod.

5.2.3.14 Ex: Conductive ring in oscillating magnetic field

A circular conductive loop (inductance L, resistance R) is traversed by an oscillating
magnetic flux, Ψ = Ψ0e

ıωt.
a. Calculate the amplitude of the current in the conductor as well as its phase relative
to Ψ.
b. What is the average power dissipated in the conductor? Also discuss the limiting

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz11.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz12.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz13.pdf
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cases ω → 0 and ω →∞.
Help: Start setting up an equivalent circuit incorporating a voltage source, a resis-
tance, and an inductance.

5.2.3.15 Ex: Self-inductance of a current loop

Calculate the self-inductance of a current loop.

5.2.3.16 Ex: Potentials

Be given are scalar potential and vector potential:

Φ(r, t) = b
rêz
r3

eıωt and A(r, t) = ıkb
eıkr

r3
eıωtêz ,

where ω = ck and r = |r|. Calculate the corresponding electric field ~E(r, t) and the

magnetic field ~B(r, t).

5.2.3.17 Ex: • Motion-induced electromotive force

In the figure a conductive rod of mass m and negligible resistance is free to slide
without friction along two parallel rails that have negligible resistances, are separated
by a distance `, and connected by a resistance R. The rails are attached to a long
plane inclined by an angle θ from the horizontal. There is a magnetic field pointing
upwards as shown.
a. Show that there is a retarding force directed upward on the inclined plane given
by F = (B2`2v cos2 θ)/R.
b. Show that the terminal velocity of the stick is vt = mgR sin θ/(B2`2 cos2 θ).

Figure 5.20: Motion-induced electromotive force.

5.2.3.18 Ex: • Induction

An insulated wire with resistance of 18.0 Ω/m and length of 9.0 m will be used to
build a resistor. First the wire is bent in half and doubled, and then the double wire
is wound into a cylindrical shape (see figure) to create a 25 cm long, 2.0 cm diameter
helix. Determine the resistance and inductance of this twisted wire resistor.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz14.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz15.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz16.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz17.pdf
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Figure 5.21: Induction.

5.2.3.19 Ex: • R-L-circuit

In the circuit shown in the figure the inductor has negligible internal resistance, and
the switch S has been left open for a long time. Now, the switch is closed.
a. Determine the current in the battery, the current in the 100 Ω resistor, and the
current in the inductance immediately after the switch has been closed.
b. Determine the current in the battery, the current in the 100 Ω resistor, and the
current in the inductance a long time after the switch has been closed.
c. After being closed for a long time, the key is now opened again. Determine the
current in the battery, the current in the 100 Ω resistor, and the current in the induc-
tance immediately after the switch has been opened.
d. Determine the current in the battery, the current in the 100 Ω resistor, and the
current in the inductance a long time after the key has been reopened.

100 �2 H

10 V

10 �

S

Figure 5.22: Circuit.

5.2.3.20 Ex: • Low pass filter

The circuit shown in the figure is an example of a low-pass filter. (Consider that the
output is connected to a load that conducts negligible current.)
a. If the input voltage is given by Vin = Vin,pico cosωt, shows that the output voltage

is Vout = VL cos(ωt− φ), where VL = Vin,pico/
√

1 + (ωRC)−2.
b. Discuss the trend in the limiting cases ω → 0 and ω →∞.

C

R

Ventrada Vsaida

Figure 5.23: Low pass filter.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz18.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz19.pdf
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5.2.3.21 Ex: • Notch filter

The circuit shown in the figure is a cutoff filter. (Consider that the output is connected
to a load carrying a negligible current.)
a. Show that the cutoff filter rejects signals in a frequency band centered in ω =
1/
√
LC.

How does the width of the rejected frequency band depend on R?

C

R

Ventrada Vsaida
L

Figure 5.24: Notch filter.

5.2.3.22 Ex: Effective power

Show that the expression Pmed = RE2
rms/Z

2 provides the correct result for a circuit
containing only one ideal ac-generator and
a. one resistor R,
b. one capacitor C and
c. one inductance L. In the given expression, Pmed is the average power supplied by
the generator, Erms is the average quadratic value of the emf-generator.

5.2.3.23 Ex: • R-L-C-circuit

In the circuit shown in the figure the ideal generator produces a voltage of 115 V when
operated at 60 Hz. What is the rms-voltage between the points
a. A and B, b. B and C, c. C and D, d. A and C, and e. B and D?

50W

A B

D C

137mH

25mF

115V

60Hz

Figure 5.25: Circuit.

5.3 Magnetostatic energy

To calculate the magnetostatic energy stored in a magnetic field we will proceed as
follows: We will look for a general expression guessed by analogy with the electro-
static energy, W = 1

2

∫
%ΦdV , and show that, applied to a current-carrying loop, this
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expression gives the correct result. The analogous formula is,

W = 1
2

∫
j ·AdV . (5.50)

5.3.1 Energy density of a magnetostatic field

The energy of a current distribution can be rewritten using Ampere’s law,

W = 1
2µ0

∫
(∇× ~B) ·AdV . (5.51)

Integration by parts allows transferring the derivative from ~B to A,

W = 1
2µ0

[
−
∮

(A× ~B) · dS +

∫
~B · (∇×A)dV

]
. (5.52)

The surface integral can be neglected because we can choose the integration volume
V to be arbitrarily large. Expressing the rotation by the field,

W = 1
2µ0

∫
~B2dV = 1

2µ0

∫
udV , (5.53)

and introducing the energy density,

u ≡ 1
2µ0

~B2 . (5.54)

It may seem strange, that we need energy to build up a magnetic field which in
turn can not exert work. On the other hand, to create this magnetic field, we have to
ramp it up from zero which, according to Faraday’s law induces an electric field. This
field, in turn, can work. Initially there is no ~E and at the end of the process there is
no ~E neither; but in between, while ~B is being constructed, there is. The work has to
be exerted against the ~E-field.

5.3.2 Inductors and storage of magnetostatic energy

Using the magnetostatic energy formula,

W = 1
2

∫
j ·AdV = 1

2

∮
I ·Adl = I

2

∮
A ·dl = I

2

∫
(∇×A) ·dS = I

2

∫
~B·dS = I

2ΨM .

(5.55)
Finally, considering a coil and using the formula (5.48),

W = 1
2LI

2 , (5.56)

which corresponds to the power,

dW

dt
= −EI = LI

dI

dt
. (5.57)
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5.3.3 Exercises

5.3.3.1 Ex: Switching processes

Consider the RL-circuit show in the figure, where the ohmic resistor R = R(t) varies
over time. Let τ be the length of the switching-on process starting at time t = 0. The
resistance be,

R(t) =





∞ for t < 0

R0τ/t for 0 ≤ t ≤ τ
R0for τ ≤ t

.

a. Set up for the time intervals t ∈ [0, τ ] and t ∈ [τ,∞] separate differential equations
for the current I(t).
b. Solve the differential equations (using a simple ansatz or a method of variable
separation) and connect the solutions continuously at t = τ . What is the condition
for fast or slow switching?

C L

RU Ue a

C

L

R

U Ue a

a

a

z

�

Bm
L

�

I

z

�

I

dA

L

R(t)U

Figure 5.26: Circuit.

5.3.3.2 Ex: Current density of a rotating charge

The surface of a hollow sphere with radius R carries a uniformly distributed charge Q.
The sphere rotates with the constant angular velocity ω around one of its diameters.
a. Determine the current density j(r) generated by this movement.
b. Calculate the magnetic moment produced by j.
c. Derive the components of the potential vector A(r) and the magnetic field ~B(r).

5.3.3.3 Ex: Train track

The two iron rails of a toy train have a thickness of d = 5 mm and a reciprocal distance
of a = 50 mm They are connected by a metal rod of mass m = 0.5 g, which is movable
without friction in a direction perpendicular to the rails. A current applied to the
rails, which also runs through the metal rod, causes the rod to accelerate along the
rails.
a. Calculate the magnetic field between the two rails, if through them runs the same
current I but in inverse directions. Neglect inhomogeneities at the ends of the rails
and the magnetic field generated by the current passing through the rod.
b. How strong is the force accelerating the rod along the rails?
c. What current would be needed to accelerate the rod over a distance of l = 5 m, up
to a speed of 10 m/s? Ignore all friction effects.
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Hausaufgaben (Abgabe: 26.06.2007)

16) Eisenstabbahn

5

Zwei parallele Modelleisenbahnschienen haben eine Dicke von d = 5mm und einen lichten Abstand
a = 50mm. Sie sind durch einen senkrecht zu den Schienen liegenden, beweglichen Metallstab der
Masse m = 0.5g leitend verbunden. Ein an die Schienen angelegter Strom, der auch durch den Me-
tallstab fließt, bewirkt die Beschleunigung des Stabes entlang der Schienen.

(a) Berechnen Sie das Magnetfeld zwischen den beiden Schienen, wenn durch beide der gleiche (aber
unterschiedlich gerichtete) Strom I fließt. Vernachlässigen Sie dabei Inhomogenitäten am Beginn
der Schienen und das vom Strom durch den Stab erzeugte Magnetfeld.

(b) Wie groß ist die Kraft in Schienenrichtung, die den Stab beschleunigt?

(c) Welcher Strom wäre notwendig, um den Stab bei einer Schienenlänge von l = 5m auf eine Ge-
schwindigkeit von 10m/s zu beschleunigen? Vernachlässigen Sie alle Reibungseffekte.

17) Massenspektrometer

3

Ein Massenspektrometer bestehe wie im Bild skiz-
ziert aus einem Kondensator mit Plattenabstabd
D = 5mm, der sich in einem homogenen Magnet-
feld der Stärke B = 0.4T befinde. Ein Isotopenge-
misch aus einfach positiv geladenen Kohlenstoffio-
nen 12C und 14C tritt durch eine Lochblende in den
Kondensator ein. Nach Durchlaufen des Konden-
sators bewegen sich die Ionen im Magnetfeld auf
einer Halbkreisbahn und werden von einem Detek-
tor gezählt, dessen Abstand y zur Lochblende vari-
iert werden kann.

U

D

y

v

B

(a) Welche Spannung muss an die Kondensatorplatten angelegt werden, damit nur Ionen einer Ge-
schwindigkeit von v = 105 m/s den Kondensator durch die zweite Blende verlassen können?

(b) In welchen Abständen y werden die beiden Kohlenstoffisotope jeweils detektiert?

18) Kirchhoffsche Regel

4

Der im Bild gezeigte Stromkreis besteht aus den
Spannungsquellen U1 = 20V und U2 = 10V so-
wie den Widerständen R1 = 150Ω, R2 = R3 =

R5 = 100Ω und R4 = 50Ω. Welcher Strom
wird am Ampèremeter A gemessen?

+
-

U
1

R
4

R
1

A

R
3

R
5

+
-

U
2

R
2

Figure 5.27: Circuit.

5.3.3.4 Ex: Mass spectrometer

A mass spectrometer consists, as shown in the figure, of a plate capacitor with D =
5 mm distance between the electrodes, placed within a magnetic field B = 0.4 T
with homogeneous amplitude. A mixture of isotopes of carbon ion 12C+ and 14C+

penetrates the capacitor through a circular slot. After transit through the capacitor
the ions move in the magnetic field on a semicircular path and are counted by a
detector, whose distance y from the slot can be varied.
a. What voltage should be applied to the plates of the capacitor to ensure that only
ions with the velocity v = 105 m/s can exit the capacitor through the second slot?
b. At what distances y can the two isotopes be detected respectively?

5.3.3.5 Ex: Transformer

Consider two similar coils with number of turns N1 and N2 connected by an iron yoke.
In the first coil we apply a time-varying voltage U1. Therefore, in this coil (called
primary) runs a current I1, producing a magnetic flux Ψ, which is transmitted entirely
through the iron yoke to the second (second) coil. Here, a voltage U2 is induced.
a. Calculate the ratio U2/U1 as a function of the number of turns. What is the
behavior of the phase between U1 and U2.
b. What are the phases of the currents I1 and I2 running through the coils with
respect to phases of the voltages? What is the consequence for the average power in
the coils?

5.3.3.6 Ex: Resonant L-R-C-circuit

Consider an excited LRC serial circuit. The components of the oscillating circuit
have the values R = 5 Ω, C = 10µF, L = 1 H, and U = 30 V.
a. At what excitation frequency ωa does the amplitude of the current have its maxi-
mum value? Give the value of the current?
b. At what angular frequencies ωa1 and ωa2 does the amplitude of the current have
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exactly half the maximum value? What is therefore the FWHM width of the reso-
nance curve for this oscillating circuit? Show that the width of the resonance curve
is given by,

ωa1 − ωa2

ωa
= R

√
3C

L
.

c. Make a scheme of some resonance curves for various values of R.

5.3.3.7 Ex: Inductive circuit

Consider the circuit shown in the figure, which consists of a coil L, a voltage source
U , and an ohmic resistor R = 100 Ω. The coil is a long solenoid with 50 turns per cm
and an inductance of 200 mH. For times t < 0 there is no current flow through the
solenoid. At time t = 0, the voltage is suddenly increased from 0 to 10 V. How long
does it take the magnetic field in the solenoid to reach the value π · 10−4 T?

Probeklausur im Integrierten Kurs Physik II, SS 2008, 30.06.2008 
besprochen in den Präsenzstunden 11 und 12 

 
 
Aufgabe 1: Schaltung mit zwei Batterien    (8 Punkte)  
 
Zwei Batterien 1 und 2 (Spannungen 
U1=2 V und U2 = 0.5 V, sowie drei 
Widerstände R1 = R2 = R3 = 1 Ω sind wie 
in der Abbildung geschaltet.  
a) Welche Ströme fließen durch die 
Widerstände R1, R2 bzw. R3? 
b) Wie groß ist der Spannungsabfall 
zwischen den Punkten A und B? 
 

R1

R2

U1

U2

R3

A B

 
 
Aufgabe 2: Induktiver Schaltkreis          (8 Punkte) 
 
Wir betrachten eine Reihenschaltung aus einer langen 
Spule, einer Spannungsquelle (Spannung U) und einem 
ohmschen Widerstand R = 100 Ω. Die Spule hat 50 
Windungen pro cm und eine Induktivität von 200 mH. 
Für Zeiten t < 0 fließe kein Strom durch die Spule. Zur 
Zeit t = 0 werde die Spannung schlagartig von 0 auf 10 V 
erhöht.  
Nach welcher Zeit erreicht das Magnetfeld in der Spule 
π⋅10-4 T?  
 

 

R

LU

 
 
Aufgabe 3: Fallender Stab       (6 Punkte) 
 
Ein metallischer Stab (Länge L = 1 m) fällt im 
Gravitationsfeld der Erde (Bei t = 0 sei die 
Anfangsgeschwindigkeit 0). Der Stab sei parallel zum 
Erdboden orientiert, senkrecht zum Stab und parallel zum 
Erdboden herrsche das Magnetfeld B

r
 (Betrag: 2⋅10-5 T).  

 

v

B

Welche Spannung wird zwischen den Enden des Drahtes in Abhängigkeit von der Fallstrecke 
h induziert?  
Welchen Spannungswert erhalten Sie nach einem Fall von 5 m? 
 
 
Aufgabe 4: Leitende Kreisringe     (8 Punkte) 
 
Gegeben seien zwei "unendlich dünne", leitende, konzentrische Ringe mit Radien a und b (a 
< b). Die Ringe sollen in der xy-Ebene liegen und ihren gemeinsamen Schwerpunkt im 
Ursprung haben. Auf dem inneren Ring möge sich homogen verteilt (d. h. mit konstanter 
Streckenladungsdichte) die Ladung +q, auf dem äußeren homogen verteilt die Ladung -q 
befinden. 

 1

Figure 5.28: Circuit.

5.3.3.8 Ex: Inductive circuit

Consider the circuit shown in the figure, which consists of a coil L, a voltage source
U0 = 10 V, and three ohmic resistors R = 100 Ω. The coil is a long solenoid with 50
turns per cm and an inductance of 200 mH. Initially, the switch is open for a long
time. Then at time t = 0, it is closed.
a. What is the initial value of the magnetic field in the solenoid while the switch is
still open?
b. Using Kirchhoff’s laws, derive the formula describing the temporal evolution of the
field after the switch has been closed.
c. Determine the field for long times after the switch has been closed.

Figure 5.29: Circuit.
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5.3.3.9 Ex: Conductive circular rings

Consider two infinitely thin conducting rings. They are concentric with radii a and b
(a < b) and arranged in the xy-plane with a common center at the coordinate origin.
The inner ring carries a homogeneously distributed charge +q (that is, with linear
constant charge density), the outer ring carries the homogeneously distributed charge
−q.
a. First, write the charge density ρ(r) = ρ(r, φ, z) in cylindrical coordinates. Now, let
the inner ring rotate with the constant angular velocity ω about the symmetry axis
(that is, the z-axis). Write the resulting current density also in cylindrical coordinates.
Help: j(r) = ρ(r) · v(r) where v(r) is the velocity at the position r. b. Determine
by an explicit calculation the dipolar magnetic moment m = 1

2

∫
d3r r × j(r) of the

rotating ring.

5.4 Alternating current

5.4.1 Electromagnetic oscillations

We have already met the plate capacitor as the most basic device for storing electro-
static energy in an (homogeneous) electric field. Similarly, the solenoid is the most
basic device for storing magnetostatic energy in a (homogeneous) magnetic field.
Placing a solenoid with inductance L and a capacitor with capacitance C in an elec-
tric circuit we find that electric energy can be converted into magnetic energy (and
vice versa) in an analogous way as potential energy can be converted into kinetic
energy (and vice versa) in a mass-spring system. This can generate (electromagnetic)
oscillations.

Example 51 (Oscillating circuits): Let us first consider a circuit with a
coil and a capacitor connected in series. Kirchhoff’s law of meshes requires,
Uind = UC, which gives,

−LdI
dt

=
Q

C
or

LÏ + C−1I = 0 .

We now consider a circuit with a battery, a switch, a coil, and a resistor in series.
Kirchhoff’s law of meshes requires, U0 = −Uind + UR = Lİ +RI, which gives,

dI

I − U0/R
= −R

L
dt

with the solution

I(t) =
U0

R
+

(
I0 −

U0

R

)
e−Rt/L ,

where we choose the initial current I0 = 0.

5.4.2 Alternating current circuits

To discuss alternating voltages, we consider the circuit shown in Fig. 5.30 fed by a
voltage source, U(t) = U0e

ıωt. To simplify the mathematical expressions we adopt
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a complex notation. The objective is to calculate the current for the various types
of consumers Z that we already got to know. In the case of an ohmic resistance we
have,

I =
U0

R
eıωt =

U

R
. (5.58)

Hence,

Z =
U

I
= R . (5.59)

In the case of a capacitance we have,

I = Q̇ = CU0
d

dt
eıωt = ıωCU . (5.60)

Hence,

Z =
U

I
=

1

ıωC
. (5.61)

In the case of an inductance we have,

I =

∫ t

0

LU0e
ıωtdt =

U

ıωL
. (5.62)

Hence,

Z =
U

I
= ıωL . (5.63)

U 0

L R C

Figure 5.30: L-R-C circuit powered by an alternating voltage.

These results can be interpreted graphically (plotting Im U versus Re U) or ana-
lytically substituting ı = eıπ/2. For the above three cases we obtain,

R =
U0e

ıωt

I0eıωt+π/2
, Lω =

U0e
ıωt

I0eıωt+ıπ/2
,

1

Cω
=

U0e
ıωt

I0eıωt−ıπ/2
. (5.64)

This means that in the case of an inductance or capacitance, the voltage is not in
phase with the current but has, respectively, an advance or a delay of 90◦.

In cases of combinations of resistors and reactants the expression to calculate this
phase shift becomes more complicated and may vary with the frequency imposed by
the alternating source. Let us see how to calculate it at the example of the L-R-C
circuit in series, writing in the same way as before,

Z =
U

I
= ıLω +R+

1

ıCω
= |Z|eıφ . (5.65)
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Hence,

|Z| = ZZ∗ =

√
R2 +

(
Lω − 1

ıCω

)2

and tanφ =
sinφ

cosφ
=
Lω − 1

Cω

R
. (5.66)

A resonance is met when ω = 1/
√
LC. Other combinations of components are treated

in the same way.

5.4.3 Exercises

5.4.3.1 Ex: High-pass filter

The circuits shown in the figure are called (a) first-order and (b) second-order high-
pass filter. Calculate for both cases the ratio of output voltage Ua and input voltage
Ue. Suppose that Ue(t) = Ue cosωt and Ua(t) = Ua cos(ωt + φ). Plot the result as
a function of frequency on a logarithmic graph with the y-axis log(Ua/Ue) and the
x-axis logω. (This graph is called ’Bode diagram’.) What is the phase shift φ as a
function of frequency?

Universität Tübingen SoSe 2008
Hausaufgaben zum Integrierten Kurs Physik II Blatt 11
30.6.2008

⋆ Hausaufgabe 1 (Leiterschleife im oszillierenden Magnetfeld)

Durch eine kreisförmige Leiterschleife (Induktivität L, Widerstand R) tritt ein oszillieren-
der magnetischer Fluss Φ = Φ0 cosωt.

(a) Berechnen Sie die Amplitude des Stroms, der im Leiter fließt, sowie dessen Phasenlage
relativ zu Φ.

(b) Welche mittlere Leistung wird im Leiter dissipiert? Diskutieren Sie auch die Grenzfälle
ω → 0 und ω → ∞.

Hinweis: Konstruieren Sie zunächst eine Ersatzschaltung aus einer Spannungsquelle,
einem Widerstand und einer Induktivität.

Hausaufgabe 2 (Differentialgleichung für einen Schwingkreis)

Der nebenstehende L-R-C Schwingkreis wird von einer
Wechselspannungsquelle U(t) = U0 cosωt getrieben.

(a) Berechnen Sie die Gesamtimpedanz Z als Funktion von
ω und stellen Sie Amplitudengang |Z(ω)| und Phasengang

φ(ω) = arctan ImZ(ω)
ReZ(ω)

graphisch dar.

(b) Stellen Sie die Differentialgleichung für den Strom auf.
Lösen Sie zunächst die homogene Differentialgleichung und
dann die inhomogene.

U 0

L R C

⋆ Hausaufgabe 3 (Hochpassfilter)

Nebenstehende Schaltungen werden als Hochpassfilter 1. Ord-
nung (a) und 2. Ordnung (b) bezeichnet. Berechnen Sie
in beiden Fällen das Verhältnis der Ausgangsspannung Ua

zur Eingangsspannung Ue . Nehmen Sie hierbei an, dass
Ue(t) = Ue cos (ωt) und Ua(t) = Ua cos (ωt+ φ). Stellen Sie
das Ergebnis als Funktion der Frequenz in logarithmischer
Darstellung graphisch dar: y-Achse: log(Ua

Ue
) und x-Achse:

(log(ω)). (Diese Darstellung wird als Bode-Diagramm beze-
ichnet.) Wie groß ist die Phasenverschiebung φ als Funktion
der Frequenz?

U

U

U

U

e

e

a

a

C

C

R

R

L

(a)

(b)

Figure 5.31: High pass.

5.4.3.2 Ex: Band and notch filter

The circuits shown in the figure are called (a) bandpass and (b) notch filter. Calculate

Figure 5.32: Filter.

for both cases the output voltage Ua(t) under the condition that the input voltage is
a sinusoidal oscillation, Ue(t) = U0 cosωt. Draw the amplitude of the output voltages
as a function of frequency.
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a. How do the amplitudes behave in the resonant case?
b. Discuss the limiting cases (i) L→ 0 resp., (ii) C →∞ based on transfer functions.

5.4.3.3 Ex: Coaxial cable

A coaxial cable consists of a cylindrical conductor of radius a and a thin cylindrical
waveguide of radius b > a. Between the conductors there is a voltage difference of U ,
and inside them flow currents in opposite directions I. Calculate the Poynting vector
in the empty space and the power carried through the cable.
Help: Calculate the electric field between the conductors using Gauß’ law and the
magnetic field between the conductors using Ampere law.

5.4.3.4 Ex: ac-resistance

Calculate the work performed by an alternating current I = I0 sinωt on a conductor
with ohmic resistance R over a time period T . Make a scheme of the evolution in a
diagram power versus time.

5.4.3.5 Ex: ac-motor

An alternating voltage motor provides with an alternating voltage of U = 220 V at
f = 50 Hz with the power P = UI cosφ = 2.2 kW. The power factor of the engine is
cosφ = 0.6 and the efficiency η = Pout/Pin = 0.89.
a. What current does the motor receive?
b. Which capacitor must be connected in parallel to the terminals of the motor in
order to increase the power factor to a value of cosφ = 0.9? Sketch the current pointer
in the U -I-plane.

5.4.3.6 Ex: Displacement current

a. Explain the significance of the continuity equation,

∮
j · dS +

d

dt

∫
ρdV = 0 .

b. Consider an enclosed area S1 + S2, because here the continuity equation has the
form, ∮

j · dS− d

dt

∫
~D · d ~DV = 0 .

Show that holds, ∮

C

~H · dl =

∫

S2

d

dt

∫
~D · dS .

Help: No field lines penetrate through the area S1, and no current flows through the
area S2.
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5.4.3.7 Ex: Resonant LC-circuit

The capacitor of an undamped oscillating electromagnetic circuit has the capacity
C = 22 nF. The eigenfrequency of the circuit is f0 = 5735 Hz. At time t = 0 the
capacitor has its maximum charge: Q0 = 0.33µC.
a. Derive for the undamped oscillating circuit the differential equation for Q(t) from
the energy conservation law and determine the solution. Write down the equation for
eigenfrequency f .
b. Calculate inductance of the coil.
c. Set up equations for the energy content of the coil and and the capacitor as a
function of time t.
d. Calculate the instant of time t2, at which the energy content of the coil is, for the
second time, half the energy content of the capacitor.

5.4.3.8 Ex: Resonant LRC-circuit

The oscillating LRC-circuit shown in 5.30 is excited by the alternating voltage source
U(t) = U0 cosωt.
a. Calculate the total impedance Z as a function of ω and prepare graphs of the

amplitude response |Z(ω)| and the phase response φ(ω) = arctan ImZ(ω)
ReZ(ω) .

b. Establish the differential equation for the current. Start by solving the homoge-
neous differential equation and then the inhomogeneous one.

5.4.3.9 Ex: Resonant LRC-circuit

The components of an RLC-circuit (see 5.30) have the values R = 5 Ω, C = 10µF,
L = 1 H, and U = 30 V.
a. At what angular frequency ωa does the current amplitude have its maximum value?
What is the corresponding current?
b. At what angular frequencies ωa1 and ωa2 does the amplitude of the current have
half the maximum value? What is the relative half-width of the resonance curve for
this resonant circuit?
c. Show with the help of the formulas of (b) that the relative half-width of each
resonance curve is given by,

∆a

ω
= R

√
3C

L
,

where ∆a is the width of the resonance profile at half the maximum amplitude.
d. Prepare schemes of the resonance profile for various values of R. When is the
current circuit predominantly capacitive and when inductive?
e. Show that the damping term e−Rt/2L (containing L but not C!) can be written in
a more symmetrical form in L and C as follows,

e−πR
t
T

√
C
L .

Here, T is the period of oscillation when we neglect resistance. What is the SI-unit
of the term

√
C/L?

f. Show, based on the result (e), that the condition for a smaller relative energy loss
per oscillation cycle is: R�

√
L/C.
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https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_AlterCircuits08.pdf
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5.4.3.10 Ex: Resonant LRC-circuit

Consider a dampened oscillating RLC-circuit. The charge q̄ on the capacitor is de-
scribed by the differential equation,

L
d2q̄

dt2
+R

dq̄

dt
+

1

C
q̄ = 0 .

a. Use the ansatz q̄ = q0e
ıωt and show that,

ω1,2 = ı
R

2L
± ω′ where ω′ = ω0

√
1− R2C

4L

with ω0 = 1/
√
LC solves the differential equation.

b. Since this is a second order differential equation, we need two boundary conditions
to determine the general solution of the form,

q̄(t) = aq̄1(t) + bq̄(t) with q̄1,2 = q̄0e
− R

2L te±ıω
′t .

Use the conditions q̄(0) = 0 and ˙̄q(0) = I0 and determine the coefficients a and b.
What is the solution for the charge q̄(t) in this case, and for the current I(t) = ˙̄q(t)?
c. Sketch the evolution of the charge and the current on the capacitor for the following
set of parameters and interpret the curves. What is the respective duration T of an
oscillation period? Give for each of the following parameter sets the respective general
solution before entering the values:
i. I0 = 1 mA, R = 10 Ω, L = 1 mH, C = 0.1µF
ii. I0 = 1 mA, R = 200 Ω, L = 1 mH, C = 0.1µF
iii. I0 = 1 mA, R = 500 Ω, L = 1 mH, C = 0.1µF
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Figure 5.33: Resonant LRC-circuit.

5.4.3.11 Ex: Magnetized sphere

We consider a sphere with radius R magnetized such that, inside the sphere, the
magnetic field density is given by ~B = B0êz. The outer space is empty, that is, there
are no currents, such that rot ~B = 0 and div ~B = 0. Therefore, we can let for the
outer space,

~B = −gradΨ and Ψ(r, ϑ, ϕ) =

∞∑

l=0

αl
Pl(cosϑ)

rl+1
,

with Pl the Legendre polynomials and r, ϑ and ϕ the usual spherical coordinates.
Consider the boundary conditions for Br, Bθ as well as for Hr andHθ at the transition
between the inner and outer space of the sphere. Determine from this the expansion
coefficients αl as well as the magnetization ~M inside the sphere. With this we finally
get the magnetic field density ~B magnetic ~H-field in the inner and outer space.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_AlterCircuits10.pdf
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5.4.3.12 Ex: Magnetic dipole moving through a conductive loop

What is the current signal produced by a 87Rb Bose-Einstein condensate with its spin
being polarized in the state |F,mF 〉 = |2, 2〉 when it falls through a SQUID? Assume
that the SQUID has the diameter 2a = 3 cm, the condensate consists of N = 100000
atoms and has a constant velocity of vz = 10 cm/s.

5.4.3.13 Ex: Electric current and magnetism

a. How are current and current density defined? What is a ’current line’?
b. What conditions should charge and current densities meet in magnetostatics?
c. How is the magnetic field ~B defined empirically?
d. Writes the general form of Ampère’s law. How is Ampère’s law expressed in the
case of two parallel conductors carrying currents I1 and I2?
e. What does the Ampère’s law say?
f. What is the magnetic moment of an arbitrary, flat, closed current circuit?
g. What are the force and thye torque on a magnetic dipole in an external field ~B(r).
h. Explain the term ’magnetization current density’.
i. What are the macroscopic equations of the magnetostatic field?
j. What is diamagnetism and paramagnetism? What differentiates these two phe-
nomena? What is ferromagnetism?

5.4.3.14 Ex: Electro-motor

Consider the electromotor of the scheme. Two pairs of Helmholtz coils aligned along
the x- and y-axes are powered by alternating currents, Ix(t) = I0 cosωt and Iy(t) =
I0 sinωt, respectively. In the field there is a rotating rectangular coil traversed by a
constant current I. The inertial moment of the coil is I.
a. Show that the field in the center is given by Bx(0) = −8

5
√

5

µ0Ixêx
R .

b. Describes the temporal behavior of the magnetic field.
c. Relate the torque with the angular acceleration of the coil.
d. Calculate the instantaneous torque acting on the coil.
e. Suppose that the coil initially rotates with an angular velocity Ω such that, θ(t) =
θ0 +Ωt. How you should choose Ω and the initial angle θ0 to ensure an always positive
torque? Help: sinα cosβ + cosα sinβ = sin(α+ β)
f. Calculate the voltage induced in the coil. Help: sinα sinβ+cosα cosβ = cos(α−β)
g. Suppose the coil has an ohmic resistance ...

5.4.3.15 Ex: Magnetism

A given magnetic material is composed of N non-interacting atoms, whose magnetic
moments µ can point in three possible directions, as shown in the figure, µx, µy,
and −µx. The system is in thermal equilibrium at temperature T and subject to a
uniform magnetic field oriented along the y-direction, ~H = Hêy, so the energy levels
corresponding to a single atom are ε0 = −µH, ε1 = 0, and ε2 = 0.
a. Get the canonical partition function z for one atom, the canonical partition function
Z of the system, and the Helmholtz free energy f per atom.
b. Determine the mean energy u ≡ 〈εn〉 and the entropy s/kB per atom.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_AlterCircuits12.pdf
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Figure 5.34: Electro-motor.

c. Get magnetization per atom m ≡ 〈~µn〉 = mxx̂+my ŷ.
d. Verify that the isothermal susceptibility χT ≡ (∂my/∂H)T ∝ 1/T at zero field
obeys Curie’s law of paramagnetism, χT (H → 0) ∝ 1/T .

Figure 5.35:

5.5 Further reading

D.J. Griffiths, Introduction to Electrodynamics [ISBN]

D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics [ISBN]

H.M. Nussenzveig, Curso de F́ısica Básica: Eletromagnetismo (Volume 3) [ISBN]

http://isbnsearch.org/isbn/978-1-108-42041-9
http://isbnsearch.org/isbn/978-0-471-21643-8
http://isbnsearch.org/isbn/978-8-521-20801-3


Chapter 6

Maxwell’s equations

In the first part of the course, we derived the laws of electromagnetism from experi-
mental observations related to the Coulomb force on electric charges and the Lorentz
force on electric currents. We have found that these forces can be understood by intro-
ducing electric fields ~E and magnetic fields ~B, to which the laws of electromagnetism
apply. These laws were all known before Maxwell. These are,

∇× ~B = µ0j Ampère’s law leading to Biot-Savart’s law

∇× ~E = −∂t ~B Faraday’s law

∇ · ~E = ε−1
0 % Gauß’ law leading to Poisson’s lawPoisson and Coulomb’s law

∇ · ~B = 0 absence of magnetic monopoles

.

(6.1)
As we will show shortly, well-behaved vector fields are entirely defined by their diver-
gences and rotations, so that we can expect that the set of laws (6.1) be complete,
that is, it should be able to describe all electromagnetic phenomena.

However, by comparing the laws of Faraday and Ampère, we perceive an incon-
sistency: taking the divergences of the rotations, we expect them to zero:

0 = ∇ · (∇× ~E) = ∇ ·
(
−∂

~B
∂t

)
= − ∂

∂t
(∇ · ~B) (6.2)

0 = ∇ · (∇× ~B) = µ0(∇ · j) = −µ0
∂%

∂t
6= 0 ,

where the last step makes use of the continuity equation (3.38). For temporal varia-
tions of the charge distribution the second equation can not be correct.

Maxwell’s idea for solving the problem was to simply subtract from Ampère’s law
the term that prevents the second equation (6.2) from zeroing. With

∇× ~B = µ0j + ε0µ0
∂~E
∂t

, (6.3)

we verify,

∇ · (∇× ~B) = µ0∇ · j + ε0µ0
∂∇ · ~E
∂t

= µ0

(
∇ · j +

∂%

∂t

)
= 0 , (6.4)

191
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where, once more, we used the continuity equation. The Eq. (6.3) could be called
Maxwell’s law and the surface integral of the additional term,

ε0
∂

∂t

∮

S
~E · dS ≡

∮

S
jd · dS = Id . (6.5)

is named displacement current. We will study consequences of this law in the Excs. 6.1.5.1
and 6.1.5.2.

Example 52 (Necessity of a displacement current): We consider the circuit
shown in Fig. 6.1. On the one hand, the current passing through the Ampèrian
loop must be independent of the shape of the enclosed area,

I =

∫
S
j · dS = 1

µ0

∮
∂S

~B · dl .

On the other hand, we know that the current can not cross the capacitor and
must accumulate on one of the electrodes.
The problem is solved by identifying the electric field, which is developing due
to the accumulated charge,

∂Q

∂t
= ε0

∂

∂t

∫
V
∇ · ~EdV = ε0

∂

∂t

∫
∂V

~E · dS ≡ Id ,

with a displacement current Id.

Figure 6.1: Necessity for a displacement current: The magnetic field at the edge of the loops
1 and 2 can not depend on the shape of the chosen surface.

6.1 The fundamental laws of electrodynamics

With these results we can finally summarize the Maxwell equations as,

(i) ∇× ~B − ε0µ0∂t~E = µ0j

(ii) ∇× ~E + ∂t ~B = 0

(iii) ∇ · ~E = ε−1
0 %

(iv) ∇ · ~B = 0

. (6.6)

These equations form the complete basis of the electrodynamical theory initially
motivated by the empirical observation of forces acting on features of matter identified
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as charges and currents, that is, the electric (Coulomb) force and magnetic (Lorentz)
force,

FLor = Q(~E + v × ~B) , (6.7)

where ~E is a polar vector (~E = −~Emirrored) 1 and ~B is an axial vector ( ~B = ~Bmirrored).

The electric field ~E and the magnetic field ~B and their field equations were ’invented’ to
explain the Coulomb-Lorentz force. They are only observable through their action on
charged particles. According to the Helmholtz theorem discussed in the next section,
arbitrary (but well-behaved) field vectors are fully defined by their divergence and
rotation properties. That is exactly what Maxwell’s equations do with the electric
and magnetic fields.

Figure 6.2: Construction and application of the theory of electrodynamics.

Once we know the fundamental laws of electromagnetism 2, we can reverse the
reasoning by placing them as postulates and deriving the observable phenomena from
them. This will be the procedure of this second part of the course of electromagnetism.

Example 53 (Derivation of electro- and magnetostatics from Maxwell’s
equations): For static systems we can let Ė = Ḃ = 0. In particular for the
electrostatic case, we ignore currents, j = 0, and for the magnetostatic case we
ignore charges, % = 0. Maxwell’s equations then simplify considerably and can
often be replaced by the Poisson equations,

−∇ · ~E = ∇ · (∇Φ) = ∇2Φ = −ε−1
0 %

−∇× ~B = −∇× (∇×A) = ∇2A−∇(∇ ·A
0
) = −j ,

where the divergence of A is set to zero in the Coulomb gauge.

We will apply Maxwell’s equations to solve the Excs. 6.1.5.3 to Excs. 6.1.5.5. In
the Excs. 6.1.5.6, 6.1.5.7, and 6.1.5.8 we study implications of a supposed existence of
magnetic charges or magnetic monopoles.

1Mirroring means inversion of the dynamic quantities v → −v, FLor → −FLor. Examples for
polar vectors are r, p, ~E. Examples for axial vectors are L, ω, ~B. We have for axial vectors ai and
polar vectors pi, the following relations,

a1 × a2 = a3 , p1 × p2 = a3 , p1 × a2 = p3 .

2We note, that Maxwell’s laws can be deduced from more fundamental principles, including the
conservation laws for energy, momentum, angular momentum, and charge and the relativistic Lorentz
transform.
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6.1.1 Helmholtz’s theorem

The Helmholtz theorem says that, knowing the divergence and the rotation of an
unknown vector field F, we can reconstruct this field under the condition that the
divergence and the rotation disappear sufficiently fast in the infinity 3 and that |F|
disappears at least as fast as 1/r2. That is, knowing the scalar field,

D(r) ≡ ∇ · F(r) (6.8)

and the vectorial field,
C(r) ≡ ∇× F(r) , (6.9)

the field F is completely defined. Note that obviously, ∇ ·C = 0.
To prove this, we show that,

F = −∇Φ +∇×A , (6.10)

where

Φ(r) ≡ 1

4π

∫

R3

D(r′)

|r− r′|dV
′ and A(r) ≡ 1

4π

∫

R3

C(r′)

|r− r′|dV
′ , (6.11)

meets the requirements (6.8) and (6.9). The divergence is,

∇r · F = −∇2
rΦ + ∇r · ∇r ×A

0
(6.12)

= − 1

4π

∫
D(r′)∇2

r

(
1

|r− r′|

)
dV ′ =

∫
D(r′)δ3(r− r′)dV ′ = D(r) .

We verify,

4π∇r ·A =

∫
C(r′) · ∇r

1

|r− r′|dV
′ = −

∫
C(r′) · ∇r′

1

|r− r′|dV
′ (6.13)

= −
∫

1

|r− r′| ∇r′ ·C(r′)
∇ · ∇ × F = 0

dV ′ −
∮

1

|r− r′|C(r′) · dS′ −→ 0 ,

because the surface integral can be arbitrarily reduced by choosing very distant
surfaces r′ →∞. Finally, the rotation is,

∇r × F = −∇r ×∇rΦ
0

+∇r ×∇r ×A = −∇2
rA +∇r(∇r ·A

0
) (6.14)

= − 1

4π

∫
C(r′)∇2

r

(
1

|r− r′|

)
dV ′ =

∫
C(r′)δ3(r− r′)dV ′ = C(r) ,

using rules of vector analysis summarized in (10.89).

6.1.2 Potentials in electrodynamics

In electrodynamics, two fields are required to describe the Coulomb and Lorentz
forces, the electric and the magnetic field. With Helmholtz’s theorem we can now

3Faster than 1/r in order to guarantee that the integrals (6.8) and (6.9) converge.
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declare that four equations are necessary and sufficient to completely characterize
these fields through the following rotations and divergences,

rot ~B = ... , rot ~E = ... , div ~E = ... , div ~B = ... . (6.15)

These equations are precisely those of Maxwell. In addition, the derivation of the
preceding section showed that

each vector field which disappears fast enough at long distances can be
expressed as the sum of the gradient of a scalar function and rotation of
a vector function,

since,

F = −∇Φ +∇×A = −∇ 1

4π

∫

R3

D(r′)

|r− r′|dV
′ +∇× 1

4π

∫

R3

C(r′)

|r− r′|dV
′ . (6.16)

The functions Φ and A are called scalar potential and vector potential, respectively.
Irrotational fields, that is, fields without vortices are conservative and can be

expressed by the gradient of a scalar field,

∇×F = 0 ⇐⇒ A = 0 ⇐⇒ F = −∇Φ ⇐⇒
∮

F ·dl = 0 . (6.17)

Example 54 (Potentials in electrostatics): Electrostatics is an example

for an irrotational field, since Maxwell’s electrostatic equations are precisely,

∇ × ~E = 0 and ∇ · ~E = D = %/ε0. Therefore, there is an electric potential Φ,

such that −∇Φ = ~E .

Fields without divergences, that is, without sources or sinks, can be expressed by
the rotation of a vector field,

∇·F = 0 ⇐⇒ Φ = 0 ⇐⇒ F = ∇×A ⇐⇒
∮

F ·dS = 0 . (6.18)

Example 55 (Potentials in magnetostatics): Magnetostatics is an example

for a field without divergences, since Maxwell’s magnetostatic equations are

precisely, ∇× ~B = C = µ0j and ∇· ~B = 0. Therefore, there is a vector potential

A, such that ∇×A = ~B.

We will train the calculation with potentials in Excs. 6.1.5.9 and 6.1.5.10.

6.1.3 The macroscopic Maxwell equations

Electric and magnetic fields and electromagnetic waves survive in vacuum. Maxwell’s
equations (6.6) are formulated for this environment. On the other hand, we saw in
the first part of the course, that charges (3.17) and currents (5.20) that are free or
localized in a medium generate a polarization and a magnetization of the medium
which can influence the fields.

In this section, we will repeat the derivation of the equations (3.18), respectively,
(5.21) in a more stringent way from a microscopic model of matter. We suppose
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matter to be made of molecules, each one being constructed from atoms composed of
positively charged nuclei orbited by negatively charged electrons. On each of these
elementary particles considered as point-like, the electromagnetic field diverges. But
doing this statement, we are talking about microscopic electromagnetic fields, which
can not be measured by macroscopic probes which, are composed of atoms themselves.
We can not directly measure microscopic quantities with a macroscopic apparatus.

According to the model of matter already formulated by Democritus 300 years
before Christ, we suppose the space between the elementary particles to be empty,
such that we can assume the validity of Maxwell’s equations for vacuum in a micro-
scopic environment, that is, we believe in the equations (6.6) for the fields ~Emic and
~Bmic, where the subscript mic indicates the presence of localized or moving point-like
charges. A macroscopic measurement apparatus will always deliver an effective mean
value, averaged in space and time, of electromagnetic quantities. We will show in
the following [48] how, via spatial averaging of Maxwell’s microscopic equations, it
is possible to deduce Maxwell’s macroscopic equations taking account of polarization
and magnetization (3.18), respectively, (5.21).

We obtain the spatial average by smearing out the microscopic quantities within
a characteristic volume defined by a spherically symmetric function f(r), chosen to
cancel out exponentially at sufficiently large distances 4. The reach of this function
must be adapted to the resolution of the macroscopic device. For example, the resolu-
tion limit for devices based on optics will limit the reach of the function f(r) to some

100 nm 5. The spatial average of the electromagnetic quantities ~Emic(r, t), ~Bmic(r, t),
%mic(r, t), and jmic(r, t) is then,

〈Xmic(r, t)〉 ≡
∫

R3

d3r′f(r′)Xmic(r− r′, t) . (6.19)

The macroscopic fields are defined as the averages of the respective microscopic fields:

~E(r, t) ≡ 〈~Emic(r, t)〉 and ~B(r, t) ≡ 〈 ~Bmic(r, t)〉 , (6.20)

where macroscopic quantities do not have the subscript mic.
Now, taking the averages of the microscopic Maxwell equations, we obtain,

(i) 〈∇ × ~Bmic(r, t)〉 − ε0µ0

〈
∂~Emic(r,t)

∂t

〉
= µ0〈jmic(r, t)〉

(ii) 〈∇ × ~Emic(r, t)〉+
〈
∂ ~Bmic(r,t)

∂t

〉
= 0

(iii) 〈∇ · ~Emic(r, t)〉 = 1
ε0
〈%mic(r, t)〉

(iv) 〈∇ · ~Bmic(r, t)〉 = 0

. (6.21)

However,

〈∇ · ~Emic(r, t)〉 = ∇ · 〈~Emic(r, t)〉 = ∇ · ~E(r, t) (6.22)

〈∇ × ~Emic(r, t)〉 = ∇× 〈~Emic(r, t)〉 = ∇× ~E(r, t) ,

4An example for a normalized smoothing function is f(r′) ≡ (a/π)3/2e−ar
′2

, as it satisfies∫
R3 f(r′)d3r′ = 1.

5In contrast, X-rays with a resolution of about 10 nm allow for an analysis of the microscopic
structure of matter.
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and analogously for ~Bmic, since ∇ acts only on r and not on the integration variable
r′. On the other hand, the partial time-derivative also does not act on r nor on r′,

〈
∂~Emic(r, t)

∂t

〉
=

∂

∂t
〈~Emic(r, t)〉 =

∂~E(r, t)

∂t
, (6.23)

and analogously for ~Bmic. Thus, we already deduced the two homogeneous macro-
scopic Maxwell equations (ii) and (iv), and the set of equations (6.21) simplifies to:

(i) ∇× ~B(r, t)− ε0µ0∂t~E(r, t) = µ〈jmic(r, t)〉
(ii) ∇× ~E(r, t) + ∂t ~B(r, t) = 0

(iii) ∇ · ~E(r, t) = 1
ε0
〈%mic(r, t)〉

(iv) ∇ · ~B(r, t) = 0

, (6.24)

but we still need to calculate 〈%mic(r, t)〉 and 〈jmic(r, t)〉.

Figure 6.3: Charges localized in molecules and free charges.

To do so we imagine that, as illustrated in Fig. 6.3, there are N charges in each
molecule of the material and, for simplicity, we also assume the material to be a pure
substance, that is to say, composed of identical molecules. Be ~Sn the position of the
n-th molecule, measured from an arbitrary origin of the coordinate system. Thus,
the k-th charge qkn of the n-th molecule is at the point ~Skn, with respect to the
position vector of the molecule ~Sn. This means that, with respect to the origin of
the coordinate system, the position of the charge qkn is given by ~Skn + ~Sn. We will
also allow for free charges, qm, at positions rm. As all the charges can move, all their
positions rm(t), ~Sn(t), and ~Skn(t) must be considered as functions of time.

First, we will calculate the charge density,

%mic(r, t) =
∑

m

qmδ
(3)(r− rm) +

∑

n,k

qknδ
(3)(r− ~Skn − ~Sn) , (6.25)

and using the definition of the spatial average (6.19),

〈%mic(r, t)〉 =
∑

m

qmf(r− rm)

%(r, t)

+
∑

n,k

qknf(r− ~Skn − ~Sn) , (6.26)
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where we recall, that the first term represents the macroscopic density of free charges
%(r, t). Typically, | ~Skn| is on the order of some Angströms only, and therefore the

’smoothing’ function f(r− ~Skn− ~Sn) does not appreciably differ from f(r− ~Sn), such
that we can approximate:

f(r− ~Skn − ~Sn) ' f(r− ~Sn)− ~Skn · ∇f(r− ~Sn) + 1
2 ( ~Skn · ∇)2f(r− ~Sn) , (6.27)

and, with this approximation, obtain,

〈%mic(r, t)〉 ' %(r, t) +
∑

n,k

qknf(r− ~Sn)−
∑

n,k

qkn ~Skn · ∇f(r− ~Sn) (6.28)

+
∑

n,k

qkn
1
2 ( ~Skn · ∇)2f(r− ~Sn)

= %(r, t) +
∑

n,k

qkn
0

f(r− ~Sn)−∇ ·
∑

n

(∑

k

qkn ~Skn
)
f(r− ~Sn)

+ 1
6

∑

n

∇ ·



(

3
∑

k

qkn ~Skn ~Skn
) 0

· ∇f(r− ~Sn)




= %(r, t)−∇ ·
∑

n

dnf(r− ~Sn) .

In the last line we assumed that each molecule is neutral,

∑

k

qkn = 0 , (6.29)

we use the definition of the electric dipole moment of the n-th molecule,

dn =
∑

k

qkn ~Skn , (6.30)

and we suppose, to simplify our calculations below, that the electric quadrupole mo-
mentum of the n-th molecule,

↔
Qn ≡ 3

∑

k

qkn ~Skn ~Skn !
=
↔
0 , (6.31)

is zero, that is, that the molecules of the material have zero electric quadrupolar
momentum. As shown in the discussion of the relationship (3.12), the polarization of
a medium is the sum of the individual instantaneous dipole moments of each molecule,

~Pmic(r, t) =
∑

n

dnδ
(3)(r− ~Sn) , (6.32)

With these observations, we conclude that,

〈~Pmic(r, t)〉 =
∑

n

dnf(r− ~Sn) , (6.33)
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and, identifying this quantity in the expression (6.28), we get,

〈%mic(r, t)〉 ' %(r, t)−∇ · ~P(r, t) , (6.34)

where we introduced the abbreviation, ~P(r, t) ≡ 〈~Pmic(r, t)〉, analogously to the elec-
trostatic case. The macroscopic Gauß law (6.21)(iii) becomes then,

∇ · ~E(r, t) = 1
ε0

[%(r, t)−∇ · ~P(r, t)] , (6.35)

that is,
∇ · ~D(r, t) = %(r, t) , (6.36)

where we defined the field of electric displacement as,

~D(r, t) ≡ ε0
~E(r, t) + ~P(r, t) . (6.37)

Let us now calculate, 〈jmic(r, t)〉. From the very definition of the microscopic
current we have,

jmic(r, t) ≡ %mic(r, t)vmic(r, t) , (6.38)

where vmic(r, t) is the velocity field of the charges of the material medium. By insert-
ing the expression (6.25) for the charge density,

jmic(r, t) =
∑

m

qmδ
(3)(r− rm)vmic(r, t) +

∑

n,k

qknδ
(3)(r− ~Skn − ~Sn)vmic(r, t) (6.39)

=
∑

m

qmṙmδ
(3)(r− rm) +

∑

n,k

qkn(ṡkn + ṡn)δ(3)(r− ~Skn − ~Sn) ,

where the field of charge velocities calculated exactly at the location of the m-th
charge gives the value of its velocity,

δ(3)(r− x)vmic(r, t) = δ(3)(r− x)ẋ .

We can now evaluate the average (6.19),

〈jmic(r, t)〉 =
∑

m

qmṙmf(r− rm)

j(r, t)

+
∑

n,k

qkn(ṡkn + ṡn)f(r− ~Skn − ~Sn) , (6.40)

where we recall, that the first term represents the macroscopic density of free current
j(r, t). Approximating again,

f(r− ~Skn − ~Sn) ' f(r− ~Sn)− ~Skn · ∇f(r− ~Sn) , (6.41)

and, with this approximation, we obtain,

〈jmic(r, t)〉 ' j(r, t) +
∑

n,k

qkn(ṡkn + ṡn)f(r− ~Sn)−
∑

k,n

qkn(ṡkn + ṡn) ~Skn ·∇f(r− ~Sn) .

(6.42)
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As we are now working to obtain the macroscopic Ampère-Maxwell equation, we need
to let appear in the above results the rotation of the magnetization, in addition to
the time derivative of the polarization. Recalling that the magnetic dipole moment
of the n-th molecule ~µn is defined by equation (4.43) as,

~µn ≡ 1
2

∑

k

qkn ~Skn × ṡkn , (6.43)

based on the relationship (5.15), we can write magnetization as the sum of the in-
stantaneous magnetic dipole moments of every molecule,

~Mmic(r, t) =
∑

n

~µnδ
(3)(r− ~Sn) , (6.44)

Thus, we want to identify, in the expression for 〈jmic(r, t)〉, the rotation of 〈 ~Mmic(r, t)〉:

∇× 〈 ~Mmic(r, t)〉 = ∇×
∑

n

~µnf(r− ~Sn) = −
∑

n

~µn ×∇f(r− ~Sn) (6.45)

= − 1
2

∑

n,k

qkn( ~Skn × ṡkn)×∇f(r− ~Sn)

= − 1
2

∑

n,k

qknṡkn[ ~Skn · ∇f(r− ~Sn)] + 1
2

∑

n,k

qkn ~Skn[ṡkn · ∇f(r− ~Sn)] ,

using the BAC-CAB rule (10.88)(v), and continuing,

∇× 〈 ~Mmic(r, t)〉 = −
∑

n,k

qknṡkn ~Skn · ∇f(r− ~Sn) + 1
2

∑

n

[∑

k

qkn
d

dt
( ~Skn ~Skn)

]
· ∇f(r− ~Sn)

= −
∑

n,k

qknṡkn ~Skn · ∇f(r− ~Sn) + 1
6

∑

n


 d
dt


3

∑

k

qkn ~Skn ~Skn
0




 · ∇f(r− ~Sn) .

(6.46)

The second term is zero again because, as in (6.31), we are assuming that
↔
Qn

!
=
↔
0 .

Continuing the calculation (6.42),

〈jmic(r, t)〉 = j(r, t) +
∑

n,k

qknṡknf(r− ~Sn) +
∑

n,k

qkn
0

ṡnf(r− ~Sn) (6.47)

+∇× 〈 ~Mmic(r, t)〉 −
∑

n,k

qknṡn ~Skn · ∇f(r− ~Sn) .

The third term disappears, because again we are assuming that the total charge of
every molecule is zero,

∑
k qkn = 0. The partial temporal derivative of the polarization

is given by the expression (6.33),

∂ ~P(r, t)

∂t
=

∂

∂t

∑

n,k

qkn ~Sknf(r− ~Sn) =
∑

n,k

qkn
∂ ~Skn
∂t

f(r− ~Sn) +
∑

n,k

qkn ~Skn
∂

∂t
f(r− ~Sn)

=
∑

n,k

qknṡknf(r− ~Sn)−
∑

n,k

qkn ~Sknṡn · ∇f(r− ~Sn) . (6.48)
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We can use this result to replace the second term in equation (6.47),

〈jmic(r, t)〉 ' j(r, t) +∇× 〈 ~Mmic(r, t)〉+
∂ ~P(r, t)

∂t
(6.49)

+
∑

n,k

qkn[ ~Sknṡn · ∇f(r− ~Sn)− ṡn ~Skn · ∇f(r− ~Sn)] .

Note, that the last term of this expression is identical to (6.45) with the difference,
that the electronic velocities ṡkn of that expression or now replaced by the molecular
velocities ṡn.

Now let us suppose that the material itself is not in motion, so that the (averaged
absolute) velocities of the molecules, ṡn, are much smaller than the (averaged abso-
lute) velocities of the charges in every molecule, ṡkn. With this, we can neglect the
last term of the above equation in comparison to the first,

µ0〈jmic(r, t)〉 ' µ0j(r, t) + µ0
∂ ~P(r, t)

∂t
+ µ0∇× 〈 ~Mmic(r, t)〉 . (6.50)

The Ampère-Maxwell equation, then reads in its spatial average (6.21)(i),

∇× ~B(r, t) = µ0〈jmic(r, t)〉+ ε0µ0

〈
∂~Emic(r, t)

∂t

〉
(6.51)

= µ0j(r, t) + µ0
∂ ~P(r, t)

∂t
+ µ0∇× 〈 ~Mmic(r, t)〉+ ε0µ0

∂~E(r, t)

∂t
,

or,

∇× [ ~B(r, t)− µ0∇× 〈 ~Mmic(r, t)〉] = µ0j(r, t) + µ0
∂

∂t
[ε~E(r, t) + ~P(r, t)] , (6.52)

Introducing the abbreviation,

~M(r, t) ≡ 〈 ~Mmic(r, t)〉 , (6.53)

defining magnetic excitation field,

~H(r, t) ≡ 1
µ0

~B(r, t)− ~M(r, t) , (6.54)

and recognizing the electric displacement field, ~D(r, t) = ε0
~E(r, t)+ ~P(r, t), we obtain,

∇× ~H(r, t) =
∂ ~D(r, t)

∂t
+ j(r, t) , (6.55)

which is the macroscopic Ampère-Maxwell equation.
The above derivations show that ~P and ~M do not exist as exact physical quan-

tities in the microscopic sense. They are artifacts of a process of smearing out the
microscopic charges and currents over smooth macroscopic distributions, with the aim
of facilitating the calculation with macroscopic quantities.
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6.1.4 The fundamental laws in polarizable and magnetizable
materials

The derivations made in the previous chapter led to Maxwell’s macroscopic equations,
which correspond to the Maxwell equations for vacuum complemented by material
equations characterizing the medium. In short,

(i) ∇× ~H = ∂t ~D + j

(ii) ∇× ~E = −∂t ~B
(iii) ∇ · ~D = %

(iv) ∇ · ~B = 0

. (6.56)

The fields are related by the macroscopic polarization and magnetization,

~P = ~D − ε0
~E and ~M = µ−1

0
~B − ~H . (6.57)

For a given free charge density distribution %(r, t) and a free current density dis-
tribution j(r, t), the above six equations (6.56) and (6.57) define the six components

of the fields unambiguously. In vacuum ε0
~E = ~D and µ−1

0
~B = ~H Maxwell’s equations

simplify. In material media, however, the secondary quantities ~D and ~H are not equal
to the fields.

Depending on its structure, a medium may have (or not) bound or free charges and
currents, responding in a specific way to applied electric and magnetic fields and giving
rise to a wide variety of features. For example, a medium is non-conductive when, even
in the presence of electric fields applied to the medium, there is no flux of current.
A medium is linear when the polarization and the magnetization depend linearly
on the electric and magnetic fields, respectively. A medium is homogeneous when
the susceptibilities do not vary across the medium. When the directions of induced
polarization and magnetization are parallel, respectively, to the electric and magnetic
fields, the medium is said to be isotropic, otherwise it is said to be anisotropic.

Depending on the type of material and its properties the equations do sometimes
simplify. For example, we have for a

medium condition

dielectric ~D = ε~E , ~P = χεε0
~E , ε = 1 + χε

non-linear dielectric ~D = ~D(~E) � ~E
dia- and paramagnetic ~B = µ ~H, ~M = χµ ~H, µ = 1 + χµ

non-linear magnetic ~B = ~B( ~H) � ~B
neutral ρ = 0

isolating j = 0

ohmic j = σ~E
non ohmic j = j(~E) � ~E
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The material equations define the material constants, that is, the permittivity ε,
the permeability µ, and the conductivity σ. These quantities are scalar for isotropic
media and tensors for anisotropic media. Resolve the Exc. 6.1.5.11.

6.1.5 Exercises

6.1.5.1 Ex: Displacement current

Consider a straight big conducting wire of radius a with a small transverse gap of
width w � a carrying a constant current I. Find the magnetic field in the gap for
distances of the symmetry axis r < a as a function of the current.

6.1.5.2 Ex: Plate capacitor

A disk-shaped plate capacitor with radius R, distance d, and ε = 1 is charged by a
constant current I.
a. Calculate from the continuity equation, neglecting edge effects, the temporal vari-
ation of the charges on the plates q(t), respectively, −q(t).
b. Calculate the temporal variation of the electric field between the plates and Maxwell’s
displacement current density.
c. Calculate the magnetic field ~B between the plates along a circular path Γ inside
(ρ < R) and outside (ρ > R) the capacitor.

d. Show that the ~B-field between the plates is, for ρ > R, equal to the ~B-field produced
by the charging current I around the conductors feeding the capacitor.

Figure 6.4: Plate capacitor.

6.1.5.3 Ex: Maxwell’s equations for a particular charge and current
density distribution

Determine the charge and current density distributions producing the fields,

~E(r, t) = − 1

4πε0

q

r2
Θ(vt− r)êr and ~B(r, t) = 0 ,

where Θ is the Heavyside function and v is a constant. Show that the fields satisfy
all Maxwell equations. Describe the physical situation producing these fields.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LeiEdinamica01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LeiEdinamica02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LeiEdinamica03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LeiEdinamica03.pdf
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6.1.5.4 Ex: Atomic diamagnetism

An electron (charge q) orbits a nucleus (charge Q) at a distance r, the centripetal
acceleration being provided by the Coulomb attraction. Now, a small magnetic field
dB is slowly ramped up, perpendicular to the plane of the orbit. Show that the
increase of the kinetic energy, dT , transferred to the electron via the induced electric
field, is exactly the one necessary to keep the circular motion on the original radius r.
(This allows us, in the discussion of diamagnetism, to assume a fixed electron radius.)

6.1.5.5 Ex: Variable charge with constant current

Suppose that j(r) is constant over time, but not %(r, t). Such conditions can prevail,
for example, during the charging process of a capacitor.
a. Show that the charge density at any point is a linear function of time: %(r, t) =
%(r, 0) + %̇(r, 0)t.
b. Despite the fact that this configuration is not electrostatic or magnetostatic, both
the Coulomb law and the Biot-Savart law remain valid, since they satisfy Maxwell’s
equations. Show in particular that,

~B(r) =
µ0

4π

∫
j(r′)× êR

R2
d3r′

with R ≡ |r− r′| obeys Ampère’s law including Maxwell’s displacement term.

6.1.5.6 Ex: Force on magnetic monopoles

In free space Maxwell’s equations are perfectly symmetric under the operation ~E →
~B → −ε0µ0

~E . But the existence of charges and electric currents breaks this symmetry.
The introduction of ’magnetic charges’ and ’magnetic currents’ would restore the
symmetry, but they were never observed 6. In this exercise we assume the existence
of a ’Coulomb law’ for ’magnetic charges’ qm,

F =
µ0

4π

qm1qm2

|r− r′|3 (r− r′) .

a. Find the force law for a magnetic charge moving with velocity v through electric
and magnetic fields ~E and ~B [81].
b. One of the methods used to search for magnetic monopoles in laboratory [20]
consists of passing them through a wire loop with the self-inductance L. What current
would be induced in the circuit by the passage of a magnetic monopole?

6Dirac showed that the existence of magnetic charges would explain the quantization of charge.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LeiEdinamica04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LeiEdinamica05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LeiEdinamica06.pdf
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6.1.5.7 Ex: Duality transform

a. In the case of existing magnetic charges and currents, Maxwell’s equations would
take the form,

(i) ∇× ~B − ε0µ0∂t~E = µ0je

(ii) ∇× ~E + ∂t ~B = −µ0jm

(iii) ∇ · ~E = ε−1
0 %e

(iv) ∇ · ~B = µ0%m .

Show that these equations are invariant under the duality transform given by,



~E ′

c ~B′


 =


 cosα sinα

− sinα cosα





~E
c ~B


 ,


cq

′
e

q′m


 =


 cosα sinα

− sinα cosα




cqe
qm


 ,

where α is an arbitrary rotation angle in the E-B space. Densities of charges and
currents transform in the same way as qe and qm. This means, in particular, that
if you would know the fields produced by an electric charge configuration, you could
immediately (using α = 90◦) deduce the fields produced by a corresponding arrange-
ment of the magnetic charge.
b. Show that the force law derived in Exc. 6.1.5.6,

F = qe(~E + v × ~B) + qm( ~B − 1
c2 v × ~E)

is also invariant under duality transformation.

6.1.5.8 Ex: Quantization of magnetic monopoles

a. Show that the vector potential,

A =
g(1− cos θ)

r sin θ
êφ

produces a Coulomb-type magnetic field [78].
b. Calculate the magnetic flux across the solid angle delimited by the polar angle θ.
c. Calculate the vector potential A′ obtained by a gauge transformation with the
gauge field χ = 2gφ.
d. Now consider the vector potential defined by A′′ ≡ A for θ ≤ π

2 and A′′ ≡ A′ for
θ ≥ π

2 . This potential has no more singularity. Derive, from the condition that the

transformation Ucl = e−ıeχ/~ be unique, the value of the magnetic charge.

6.1.5.9 Ex: Green’s identities

Be φ and ψ two continuously differentiable functions and V a volume with the border
∂V . Show with the help of Gauß’ theorem,
a. ∫

V

[
φ∇2ψ + (∇φ) · (∇ψ)

]
dV =

∫

∂V

φ(∇ψ) dS ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LeiEdinamica07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LeiEdinamica08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_PotenciaisHelmholtz01.pdf
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b. ∫

V

[
φ∇2ψ − ψ∇2φ

]
dV =

∫

∂V

[φ∇ψ − ψ∇φ] dS .

6.1.5.10 Ex: Decomposition of vector fields

Be F(r, t) an arbitrary vector field defined on R, which tends (along with its deriva-
tives) to zero in sufficiently high order, when |r| → ∞. This field can be decomposed
into a sum of a longitudinal and a transverse component, F = Fl+Ft with ∇×Fl = 0
and ∇ · Ft = 0.
a. Prove,

Fl(r, t) = − 1

4π
∇
∫ ∇′ · F(r′, t)

|r− r′| d3r′ and Ft(r, t) = +
1

4π
∇×∇×

∫
F(r′, t)

|r− r′|d
3r′ .

Help: Begin showing that,

F(r, t) = − 1

4π
4
∫

F(r′, t)

|r− r′|d
3r′

and use the vector identity,

∇×∇×A = ∇(∇ ·A)−4A .

b. Show that the vector field F(r) is unequivocally given by its sources, ∇ ·F(r), and
vertices, ∇× F(r).

6.1.5.11 Ex: Conductivity of seawater

Sea water has at the frequency v = 4 · 108 Hz the permittivity ε = 81ε0, the per-
meability µ = µ0, and the resistivity ρ = 0.23 Ωm. What is the ratio between the
conduction current and the displacement current? Help: Consider a parallel-plate
capacitor immersed in seawater and driven by a voltage V0 cos(2πνt).

6.2 Conservation laws in electromagnetism

The importance of conservation laws and symmetries lies in their universal validity
and their independence of a particular theory (mechanics, electrodynamics, ..). They
often allow the derivation of laws, which are specific for a theory and of equations
of motion for particular systems. For example, in classical mechanics, we can derive
Newtonian axioms from the conservation of linear momentum, and in electrodynam-
ics, as we shall see later, we can derive Maxwell’s equations from the principles of
Lorentz invariance, gauge invariance, and electric charge conservation, as expressed
by the continuity equation. The question which we will elucidate in the following
sections will be that of the validity of other mechanical conservation laws in elec-
trodynamics, that is, the laws of energy, linear momentum, and angular momentum
conservation.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_PotenciaisHelmholtz02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LeiEmateriais01.pdf
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In the context of preparing the deductions, let us defined some important quanti-
ties 7,

(i) u = 1
2 (~E · ~D + ~B · ~H) energy density (6.58)

(ii) ~S = ~E × ~H energy flux or Poynting vector

(iii) f = %~E + j× ~B Lorentz force density

(iv) ~℘A = ε0µ0
~S = 1

c2
~E × ~H Abraham momentum density

(iv) ~℘M = ~D × ~B Minkowski momentum density

(v) ~̀= r× ~℘ angular momentum density

(vi)
←→
T = ~D ⊗ ~E + ~H⊗ ~B − 1

2uI Maxwell stress tensor .

All fields are time-dependent. From Maxwell’s equations we derive the electrody-
namical continuity equation, the Poynting theorem, and the conservation of linear
and angular momentum. Resolve the Exc. 6.2.5.1.

6.2.1 Charge conservation and continuity equation

Calculating the divergence of Maxwell’s first equation and using the third,

∇ · (∇× ~H) = ∂t∇ · ~D +∇ · j = ∂t%+∇ · j = 0 . (6.59)

This law describes charge conservation in electrodynamics.

6.2.2 Energy conservation and Poynting’s theorem

The time derivative of the energy density (6.58)(i) is,

∂tu = 1
2 (~E · ∂t ~D + ~D · ∂t~E + ~B · ∂t ~H+ ~H · ∂t ~B) = ~E · ∂t ~D + ~H · ∂t ~B , (6.60)

supposing ~D = ε~E and ~H = ~B/µ with time- and space-independent ε, µ = const. The
divergence of the Poynting vector is,

∇ · ~S = ∇ · (~E × ~H) = ~H · (∇× ~E)− ~E · (∇× ~H) = − ~H · ∂t ~B − ~E · (∂t ~D + j) . (6.61)

With this we immediately see,

∂tu+∇ · ~S = −j · ~E . (6.62)

To better understand this theorem, we calculate the work exerted by the Coulomb-
Lorentz force per unit time on a test charge q,

dW

dt
=

d

dt

∫

C
F · dl =

d

dt

∫
q(~E + v × ~B

0

) · vdt = qv · ~E . (6.63)

7The question of the correct expression for the momentum density is difficult and will be dealt
with later.
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The current generated by the charge can be derived from the parametrization j(r) =
qvδ3(r− r′). Thus, we derive the Poynting theorem,

dW

dt
=

∫

V
~E · jdV = − d

dt

∫

V
udV −

∫

V
∇ · ~SdV = −dUerg

dt
−
∮

∂V
~S · dS . (6.64)

This theorem postulates energy conservation. That is, the electromagnetic energy
Uerg within a volume V can only change (1) by diffusion out of the volume via a flux∫
~S ·dS of the Poynting vector, or (2) when mechanical work W is done on the volume

or when the electromagnetic energy in the volume is dissipated into other forms of
energy, for example heat. We apply the Poynting theorem to a current-carrying wire
in Exc. 6.2.5.2.

Example 56 (Derivation of Ohm’s law by the Poynting vector): The
current flux through a wire exerts work, because the wire heats up. We calculate
the energy transferred to the wire per unit time via the Poynting vector. The
electric field (assumed to be uniform) along the wire (length L and radius a) is,

E =
U

L
,

where U is the voltage between the ends of the wire. The magnetic field at the
surface of the wire is,

B =
µ0I

2πa
.

Therefore, the absolute value of the Poynting vector is,

s =
1

µ0
EB =

UI

2πaL
.

pointing into the wire, ~S ∝ −êr. The energy per unit of time passing through
the surface of the wire is therefore,∫

~S · dS = s(2πaL) = UI ,

confirming previously obtained results. As the fields are stationary, the electro-

magnetic energy does not vary with time, neither, ∂tUerg = 0.

Figure 6.5: Energy flux into the wire causes heating.

6.2.3 Conservation of linear momentum and Maxwell’s stress
tensor

The interaction between two charges is described by the Coulomb-Lorentz force. How-
ever, when these charges accelerate each other mutually, they generate non-stationary
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fields, so that the force laws of Coulomb and Biot-Savart do not apply. We will see
later, how to generalize these laws.

Nevertheless, at first glance, the Coulomb force seems compatible with the third
Newton law: actio = reactio, but not with the Lorentz force.

Example 57 (Linear momentum of the electromagnetic field): To see
this, we consider two charged particles with trajectories,

l1(t) = vtêy , l2(t) = vtêx .

Charge 1 produces a field ~B1 at the position of charge 2 and vice versa. At time
t = 0, when they collide, the forces become orthogonal:

F12 = qv2 × ~B1 ⊥ qv1 × ~B2 = F21 .

Figure 6.6: The Lorentz forces exerted by approaching charges are mutually orthogonal.

Obviously, in electrodynamics, the Lorentz force flagrantly violates Newton’s third
law in way to raise questions about the validity of momentum conservation. The so-
lution is that in electrodynamics, the electromagnetic field itself may lose or gain
momentum and should be included in the formulation of a law of momentum con-
servation. Moreover, the field does not move instantaneously, but propagates at the
speed of light and is subject to retardation effects. The law actio = reactio postu-
lates the existence of forces acting at a distance that, as we nowadays know, do not
exist 8. We shall return to this problem in the discussion of the relativistic Lorentz
transformation.

6.2.3.1 Maxwell’s tress tensor

We now consider the Lorentz force density, which we will try to express totally in
terms of fields, eliminating the charge and current densities [65],

f = %~E + j× ~B = ~E(∇ · ~D) +

(
∇× ~H− ∂ ~D

∂t

)
× ~B . (6.65)

We reformulate the last term,

−∂
~D
∂t
× ~B = ~D × ∂ ~B

∂t
− ∂

∂t
( ~D × ~B) = − ~D × (∇× ~E)− ∂

∂t
( ~D × ~B) . (6.66)

8One of the important changes of paradigm in the history of physics is from interaction at a
distance to local interaction. Newton was a supporter of non-local interaction for gravity. Ironically
he argued against waves in favor of particles for light. Today the opinion thinks the other way round:
Particles are mediators of local interactions, while only waves can mediate non-local features.
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Knowing ~H(∇ · ~B) = 0, we can add this term to the force without cost,

f = ~E(∇ · ~D)− ~D × (∇× ~E) + ~H(∇ · ~B)− ~B × (∇× ~H)− ∂

∂t
( ~D × ~B) . (6.67)

We use the rule from vector analysis,

∇(~E · ~D) = ~E × (∇× ~D) + ~D × (∇× ~E) + (~E · ∇) ~D + ( ~D · ∇)~E (6.68)

= 2 ~D × (∇× ~E) + 2(~E · ∇) ~D ,

and analogously for ~B · ~H. The second equation holds, because for ~D = ε~E with
ε = const, we can arbitrarily exchange the order of products between ~D and ~E . We
also assume µ = const, which allows us to exchange the order of products between ~H
and ~B. We use the rule (6.68) to replace the terms with vector products in equation
(6.67),

f = ~E(∇ · ~D)− 1
2∇(~E · ~D) + (~E · ∇) ~D (6.69)

+ ~H(∇ · ~B)− 1
2∇( ~H · ~B) + ( ~H · ∇) ~B − ∂t ~D × ~B .

The last term is nothing more than the time derivative of the Minkowski momentum
density of the electromagnetic field defined in (6.58), ~℘M ≡ ~D × ~B, which still awaits
interpretation.

Now we introduce the Maxwell stress tensor (in Minkowski’s form) by 9,

TMij ≡ DiEj +HiBj − δij
2 (~E · ~D + ~H · ~B) . (6.70)

Defining the divergent of a matrix, we obtain using Einstein’s sum convention,

(∇ ·
↔
T)j ≡ (∂iTij)j =

(
∂i(DiEj) + ∂i(HiBj)− ∂i δij2 (~E · ~D + ~H · ~B)

)
j

(6.71)

=
(
Ej∇ · ~D + ~D · ∇Ej + Bj∇ · ~H+ ~H · ∇Bj − 1

2∂j(
~E · ~D + ~H · ~B)

)
j
.

These terms coincide with those of the equation (6.69) except for the last one. Now,
we can reshape the Lorentz force,

−∂t ~℘M +∇ ·
↔
T = f . (6.72)

The mechanical force acting on a volume V,

F =

∮

∂V

↔
T · dS− d

dt

∫

V
~℘MdV , (6.73)

can be expressed by a momentum flux escaping the volume plus a ’stress’ acting on
its surface in every direction. The diagonal components Tii represent ’pressures’ and
the non-diagonal ’shear stresses’. In static situations only the stress results in forces.

9In matrix notation,

∇ ·
↔
T =

(
d
dx

d
dy

d
dz

)
Txx Txy Txz

Tyx Tyy Txz

Tzx Tzy Tzz

 .
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Example 58 (Force on a charged body): As an example of application of
the stress tensor we calculate the force exerted by a solid uniformly charged
(charge Q) sphere of radius R on its own upper part. The volume of the upper
hemisphere is enclosed by two surfaces: one hemispheric surface and a flat one.
In Cartesian coordinates,

êr = êx sin θ cosφ+ êy sin θ sinφ+ êz cos θ ,

for the hemispherical surface, we write the electric field and the surface element
as,

~E =
1

4πε0

Q

R2
êr and da = êrR

2 sin θdθdφ .

We calculate the stress tensor,

↔
T = ε0


E2
x − 1

2
E2 ExEy ExEz

ExEy E2
y − 1

2
E2 EyEz

ExEz EyEz E2
z − 1

2
E2



= ε0

(
1

4πε0

Q

R2

)2


sin2 θ cos2 φ− 1

2
sin2 θ cosφ sinφ cos θ sin θ cosφ

sin2 θ cosφ sinφ sin2 θ sin2 φ− 1
2

cos θ sin θ sinφ

cos θ sin θ cosφ cos θ sin θ sinφ cos2 θ − 1
2

 .

The integral of the tensor over the surface can be evaluated by Maple,∫
↔
Tda =

∫ 2π

0

∫ π/2

0

↔
TêrR

2 sin θdθdφ =
Q2

32πε0R2
êz .

For the flat surface we write,

~E =
1

4πε0

Q

R3
rêr and da = −êzrdrdφ .

Now we calculate with θ = π/2,

↔
T = ε0

1

(4πε0)2

Q2

R6


r2 cos2 φ− 1

2
r2 cosφ sinφ 0

r2 cosφ sinφ r2 sin2 φ− 1
2

0

0 0 − 1
2
r2

 .

The integral over the surface gives,∫
↔
Tda = −

∫ 2π

0

∫ R

0

↔
Têzrdrdφ =

Q2

64πε0R2
êz .

Combining the results we obtain the force by the equation (6.73),

F =

∮
hemisphere

↔
Tda =

3Q2

64πε0R2
êz .

The result of this example demonstrates, how we can reduce the calculation of a
force acting on a volume to an integral over the surface enclosing the volume. We will
calculate other examples in Excs. 6.2.5.3 to 6.2.5.6.
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Figure 6.7: Electrostatic forces inside a charged sphere.

6.2.3.2 Conservation of linear momentum

According to Newton’s second law, F = ∂tpmec or f = ∂t ~℘mec, the Lorentz force
produces a variation of the mechanical momentum. In addition, there is a momentum
pM =

∫
V ~℘

MdV , which must be attributed to the electromagnetic field, since it only
exists in the presence of both electric and magnetic fields. pmec and pM can be
interconverted, as in the example of the photonic recoil received by an atom upon an
absorption process. But the sum of the mechanical momentum and the momentum of

the field can only change through the term ∇·
↔
T. This is the law of linear momentum

conservation. Evidently, −
↔
T is the momentum flux density, playing a role similar

to the one of the current density j in the continuity equation or of the energy flux
density ~S in Poynting’s theorem. −Tij is the momentum per unit area and time in
the direction i passing a surface oriented in j-direction.

We note two very different roles of the Poynting vector: In the energy conservation
equation ~S is the energy per unit area and time carried by electromagnetic fields, while
in the momentum conservation equation, ~℘M = ε0µ0

~S is the momentum per unit

volume stored in these fields. Similarly,
↔
T plays two roles:

↔
T is the electromagnetic

stress (i.e. a force per unit area or pressure) acting on a surface, while −
↔
T describes

the momentum flux (momentum current density) carried by these fields.

Figure 6.8: The laws of energy and momentum conservation connect the theories of electro-
dynamics with classical mechanics and thermodynamics.

Forces exerted by (non-radiating) fields on particles can be interpreted as being
due to a scattering of ’virtual particles’. For example, the electrostatic force between
charged particles and the magnetostatic force between magnetic dipoles are caused
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by an exchange of virtual photons. These photons carry momentum that is trans-
ferred via recoil in a scattering event. Since the photon has no mass, the electric
(respectively, magnetic) potential has infinite range.

The photonic concept can be extended to electromagnetic fields, as demonstrated
by Max Planck in his discussion of the blackbody radiation. The spontaneous emis-
sion of a photon during the decay of an excited atom, postulated by Albert Einstein,
is forbidden in ’classical’ quantum mechanics, and requires quantization of the elec-
tromagnetic field for its explanation. The quantized energy packets, called photons,
also carry momentum, which can be transferred to bodies absorbing the radiation.
The fact that light beams can exert forces is nowadays commonly exploited in tech-
niques for cooling atomic gases. This process is called radiation pressure and will be
discussed elsewhere.

Example 59 (The Abraham-Minkowski dilemma): The expression ~℘A =
1
c2
~E × ~H for the momentum flux in dielectric media was proposed by Abraham

in 1909, but it is not obvious that this expression is correct. In fact, in the same
year 1909 Minkowski proposed the expression ~℘M = ~D × ~B, and until today
this Abraham-Minkowski dilemma is not satisfactorily solved [12, 100]. See also
(watch talk).
In an (over-)simplified way, we may illustrate the dilemma by the fact that even
the correct expression for the photonic momentum within a dielectric is un-
known. For, knowing that the phase velocity is reduced in a dielectric medium,
c → c/n, we could derive from the kinetic momentum in vacuum, p = m c

n
,

where the mass follows from Einstein’s formula, m = ~ω
c2

. That is, the photonic
momentum within a dielectric medium should be,

p =
~ω
nc

.

This is Abraham’s conclusion, which emphasizes the corpuscular aspect of the
photon. On the other side, starting with de Broglie’s expression, p = h

λ
, using

the dispersion relation, λ = c
nν

, we would conclude that the photonic momentum
within a dielectric medium must be,

p =
n~ω
c

,

which is Minkowski’s result emphasizing the undulating features of the photon.
In fact, the dilemma arises because, a priori, it is not clear whether the correct
expression for the momentum carried by an electromagnetic wave is,

~℘A = 1
c2
S = 1

c2
~E × ~H or ~℘M = ~D × ~B .

In vacuum there is no difference, but in the case of a plane wave inside a dielectric
medium, ~E(r, t) = E0êx cosω(t− n

c
z) and ~B(r, t) = n

c
êz × ~E(r, t), we calculate,

℘A ≡ 1
c2
~E × ~H = 1

µ0c2
~E × ~B = 1

µ0c2
E2

0 êz
n
c

cos2 ω(t− n
c
z)

= 1
µ0c2
E2

0 êz
n
c

1
2

= 1
ε0µ0c2

− êz
u
nc

= êz
u
nc

℘M ≡ ~D × ~B = ε0
~E × ~B = ε0µ0c

2 ~℘A = n2 ~℘A .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/AbrahamMinkowski
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6.2.4 Conservation of angular momentum of the electromag-
netic field

The angular momentum conservation (6.58) is also ruled by Maxwell’s equations. But
its derivation is complicated [42, 48] and will not be reproduced here. In Exc. 6.2.5.7
we calculate the angular momentum stored in a static combination of electric and
magnetic fields. In Exc. 6.2.5.8 we calculate the torque acting on charges due to a
temporal variation of electromagnetic fields. Finally, in Exc. 6.2.5.9 we try classical
discussion of the intrinsic angular momentum (spin) of the electron.

Example 60 (Angular momentum of electromagnetic fields): Imagine a
very long solenoid with radius R, n windings per unit length, and carrying the
current I. Coaxially to the solenoid there are two long cylindrical layers of
length d. The first one, of radius a, lies inside the solenoid and carries a charge
+Q evenly distributed over the surface; the other one, of radius b, is outside the
solenoid and carries the charge −Q, as shown in Fig. 6.9. We suppose d � b.
When the current in the solenoid is gradually reduced, the cylinders begin to
rotate. The question is, where does the angular momentum come from?

Figure 6.9: Device with a solenoid and charged cylinders illustrating the conservation of
angular momentum.

Let us first calculate the angular momentum stored in the electric and magnetic
field before we started to reduce the current. In the region between the cylinders,
a < ρ < b, we had the electric field ~E = Q

2πε0d

êρ
ρ

, and in the inner region of

the solenoid, ρ < R, the magnetic field, ~B = µ0nIêz. Therefore, in the region
a < ρ < R, the momentum density (6.58) was,

~℘ = ε0
~E × ~B = −µ0QnI

2πρd
êφ

The angular momentum density,

~̀= r× ~℘ = −µ0nIQ

2πd
êz ,

was constant, which facilitates the calculation of the total orbital angular mo-
mentum,

L =

∫
~̀dV = ~̀π(R2 − a2)d = − 1

2
µ0nIQ(R2 − a2)êz .
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Apparently, the existence of an orbital angular momentum is conditioned to the
presence of both, a charge and a current.
Now, when the current is turned off, the variation of the magnetic field induces
a circumferential electric field, given by Faraday’s law:

~E = − 1
2
µ0n

dI

dt
êφ

{
ρ for ρ < R
R2

ρ
for ρ > R

.

The Coulomb force exerted by the electric field on the charged outer cylinder
produces a torque on the cylinder,

Nb = r× (−Q~E) = 1
2
µ0nQR

2 dI

dt
êz ,

so that it receives the angular momentum,

Lb =

∫ ∞
0

Nbdt = 1
2
µ0nQR

2êz

∫ 0

I

dI

dt
dt = − 1

2
µ0nIQR

2êz .

In the same way, we obtain for the inner cylinder,

Na = − 1
2
µ0nQa

2 dI

dt
êz , La = 1

2
µ0nIQa

2êz .

Hence, we verify that L = La + Lb. The angular momentum lost by the fields

is precisely equal to the angular momentum acquired by the cylinders, that is,

the total angular momentum is conserved.

6.2.5 Exercises

6.2.5.1 Ex: Poynting vector for free charges and currents

Write down the Poynting vector and the momentum density for the case, that there
are only free charges and currents.

6.2.5.2 Ex: Energy flux in a current-carrying wire

A cylindrical wire with radius a and permeability µ is traversed by a constant current
density j. The electric field ~E inside the wire and the current density j are connected
by Ohm’s law j = ς ~E , where ς is the electrical conductivity.
a. What absolute value and which direction does the Poynting vector ~S have in the
wire and on the wire surface?
b. Calculate the total energy flux running through the surface of a piece of wire of
length l. Show that this flux of energy is precisely the power dissipated within this
piece for the production of ohmic heat.
Help: The law of energy conservation in electrodynamics is given by −dudt = ∇ ~S+j·~E ,

where u = 1
2 (~E · ~D+ ~B · ~H) is the total energy density, ~S = ~E × ~H the energy flux and

j · ~E the work exerted on the electric current density.

6.2.5.3 Ex: Intrinsic force in a rotating charged shell via Maxwell’s
tensor

Calculate the attractive magnetic force between the north and south hemispheres of
a uniformly charged spherical shell (radius R and surface charge density Q) rotating
with the angular velocity ω. Use the result of Exc. 4.3.3.1 (clicking on the title).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LeiConservacao00.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LeiConservacao01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_TensorMaxwell02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_TensorMaxwell02.pdf
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6.2.5.4 Ex: Coulomb force via Maxwell’s tensor

Consider two equal (or opposite) point charges q, separated by distance 2a. Construct
the plane which is equidistant from the two charges. Determine the mutual force
between the charges.

6.2.5.5 Ex: Force on a current distribution in a magnetic field

The force felt by a current distribution j(r) in an external magnetic field is,

F =

∫

V

d3r′j(r′)× ~B(r′) .

Show that this force can also be written as an integral over the surface S ≡ ∂V
enclosing the volume V:

Fj =

∮

S

3∑

i=1

dSi Tij with Tij = 1
µ0

(
BiBj − 1

2B2δij
)
.

6.2.5.6 Ex: Force on the plates of a capacitor

Consider an infinite parallel-plate capacitor, with the lower plate (at z = −d/2)
carrying the charge density −σ and the upper plate (at z = +d/2) carrying the
charge density σ. Determine the stress tensor in the region between the plates.

6.2.5.7 Ex: Angular momentum of an electromagnetic field

Assuming the existence of an electric charge qe and a magnetic monopole qm, calculate
the total angular momentum stored in the fields,

~E =
qe

4πε0

êr
R2

and ~B =
µ0qm

4π

êr
R2

,

when the two charges are separated by a distance d.

6.2.5.8 Ex: Torque on a demagnetized or discharged iron sphere

We imagine an iron sphere of radius R carrying a charge Q and a uniform magneti-
zation ~M =Mêz. The sphere is initially at rest.
a. Calculate the angular momentum stored in the electromagnetic fields.
b. Suppose the sphere is gradually (and uniformly) demagnetized (perhaps by heating
it beyond the Curie point). Use Faraday’s law to determine the induced electric field
and find the torque that this field exerts on the sphere. Calculate the total angular
momentum transferred to the sphere during demagnetization.
c. Suppose that, instead of demagnetizing the sphere, we discharge it by connecting
the north pole of the sphere via a wire to Earth. Suppose that the current flows on the
surface in such a way, that the charge density remains uniform. Use the Lorentz force
law to determine the torque on the sphere and calculate the total angular momentum
given to the sphere during the discharge. (The magnetic field is discontinuous on the
surface ... does this matter?)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_TensorMaxwell03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_TensorMaxwell04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_TensorMaxwell05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_ConservaAngular01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_ConservaAngular02.pdf
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6.2.5.9 Ex: Magnetic moment of the electron

In relativistic quantum mechanics the magnetic moment of the electron has the value,

µ = gµB
1

2
=

e~
2mc

= 9.28 · 10−25 T m3 .

This exercise aims to show that the classical interpretation of this magnetic moment,
as being due to a rotating charge distribution, leads to intrinsic contradictions. Let
us regard the electron as a sphere of mass me with radius re carrying the charge
e homogeneously distributed over its surface. It rotates around its z-axis with the
angular velocity ω. Classically, the movement of the surface charge causes a magnetic
moment.
a. Calculate the total energy contained in the electromagnetic fields.
b. Calculate the total angular momentum contained in the fields.
c. According to Einstein’s formula, WED = mec

2, the energy in the fields must con-
tribute to the mass of the electron. Lorentz and other scientists have speculated that
the entire mass of the electron could be understood in this way. Suppose, furthermore,
that the rotational angular momentum (spin) of the electron is entirely attributable
to the electromagnetic fields: LED = ~/2. From these two premisses, determine the
radius and the angular velocity of the electron, as well as the product ωre. Does this
classical model make sense?
d. Determine the magnetic moment of the rotating electron.

6.3 Potential formulation of electrodynamics

6.3.1 The vector and the scalar potential

All quantities involved in Maxwell’s equations for vacuum, the fields ~E(r, t) and ~B(r, t)
as well as charge (ρ(r, t)) and current (j(r, t)) distributions they depend on space and

time. Knowing that the divergence of a field is zero everywhere, ∇· ~B = 0, we conclude
that this field must be the rotation of another field. That is, there is a vector field
A(r, t), such that,

~B(r, t) = ∇×A(r, t) . (6.74)

Substituting the so-called vector potential A(r, t) in Faraday’s law, ∇× ~E = −∂ ~B∂t ,
we obtain,

∇× ~E = − ∂

∂t
(∇×A) = −∇× ∂A

∂t
. (6.75)

Hence,

∇×
(
~E +

∂A

∂t

)
= 0 . (6.76)

Now, since the rotational field within the parentheses is null everywhere, it follows
that there exists a scalar field Φ(r, t), called scalar potential, such that,

~E +
∂A

∂t
= −∇Φ . (6.77)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_ConservaAngular03.pdf
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The minus sign in front of the gradient of Φ(r, t), is introduced to recover the elec-
trostatic case when A(r, t) does not depend on time. In summary, if we know the

vector and scalar potentials, we can calculate the fields ~E(r, t) and ~B(r, t) following
the prescription expressed by the equations:

~E(r, t) = −∇Φ(r, t)− ∂A(r, t)

∂t
and ~B(r, t) = ∇×A(r, t) . (6.78)

6.3.2 Gauge transformation

Substituting the expression for the electric field by the vector and scalar potentials in
Gauß’ law, ∇ · ~E = %

ε0
,

%

ε0
= ∇ ·

(
−∇Φ− ∂A

∂t

)
= −∇2Φ− ∂∇ ·A

∂t
. (6.79)

Replacing the fields ~E(r, t) and ~B(r, t) by the potentials defined in (6.78), within the

law of Ampère-Maxwell, ∇× ~B = µ0j + ε0µ0
∂~E
∂t , we obtain,

∇× (∇×A) = ∇(∇ ·A)−∇2A = µ0j−
1

c2
∂

∂t

(
−∇Φ− ∂A

∂t

)
. (6.80)

that is,

∇2A− 1

c2
∂A2

∂t2
−∇

(
∇ ·A +

1

c2
∂Φ

∂t

)
= −µ0j . (6.81)

The coupled differential equations (6.79) and (6.81) allow us, in principle, to derive
a set of potentials Φ and A, generated by a charge and current distribution % and j,
from which the fields ~E and ~B can be calculated. However, these potentials are not
unique. To see this, let us suppose new potentials,

Φ1 ≡ Φ− ∂χ

∂t
and A1 ≡ A +∇χ . (6.82)

Obviously, these potentials produce the same fields, since,

~B1 = ∇× (A +∇χ) = ~B , (6.83)

using the expressions (6.78) and,

~E1 = −∇
(

Φ− ∂χ

∂t

)
− ∂

∂t
(A +∇χ) = −∇Φ− ∂

∂t
A = ~E . (6.84)

Thus, it is clear that the fields are the same for an infinite number of different poten-
tials, provided they follow from each other by a so-called gauge transform,

A −→ A +∇χ and Φ −→ Φ− ∂tχ . (6.85)

This gauge invariance leaves the observable fields ~E and ~B invariant.
The freedom of choosing an appropriate gauge field can be employed to simplify

the set of equations (6.79) and (6.81) for particular problems, as we will discuss in
the following sections.
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6.3.2.1 Lorentz gauge

We note that if the expression within the brackets of Eq. (6.81) were zero,

∇ ·A +
1

c2
∂Φ

∂t

!
= 0 (6.86)

we would have from the equations (6.79) and (6.81) ’wave’ type equations for the
potentials,

∇2Φ− 1

c2
∂2Φ

∂t2
= − %

ε0
and ∇2A− 1

c2
∂2A

∂t2
= −µ0j . (6.87)

To analyze the viability of the expression (6.86), we apply a gauge transformation,

∇ · (A +∇χ) +
1

c2
∂(Φ− ∂tχ)

∂t
= ∇2χ− 1

c2
∂2χ

∂t2
= 0 . (6.88)

Hence, imposing the additional condition (6.86) is legal, because it can always be
satisfied by a simple gauge transformation with a field χ satisfying the wave equation
(6.88).

The equation (6.86) is known as the Lorentz gauge. We emphasize that it is not
necessary to postulate the equation, but it is always possible to find a scalar function χ,
which allows the use of new potentials, giving the same ~E and ~B fields and satisfying
this equation 10.

Introducing the notation of the d’Alembert operator,

� ≡ ∇2 − ε0µ0
∂2

∂t2
, (6.89)

the wave equations (6.87) become,

�Φ = −ε−1
0 % and �A = −µ0j . (6.90)

They generalize the electro- and magnetostatic equations (6.6) to include temporal
variations simply by replacing the Laplacian with a d’Alembertian. The democratic
treatment of Φ and A by a Poisson-like equation in four space-time dimensions is
particularly interesting in the context of special relativity. We study examples of the
Lorentz gauge in Excs. 4.3.3.6 to 4.3.3.8 and 6.3.8.1 to 6.3.8.7.

6.3.2.2 Coulomb gauge, transverse and longitudinal currents

Another condition that can be applied to the potentials in order to simplify the
differential equations (6.86) and (6.88) consists in setting,

∇ ·A !
= 0 . (6.91)

10E.g. choosing χ such that ∇χ = −A and c−1∂tχ = φ.
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This is called the Coulomb gauge. With this condition we obtain from (6.79) the
Poisson equation as well as an equation for the vector potential,

−∇2Φ =
%

ε0
(6.92)

−∇2A +
1

c2

(
∂2A

∂t2
+
∂

∂t
∇Φ

)
= µ0j .

These two equations determine the vector and scalar potentials if the current and
charge density distributions are specified 11. The first Eq. (6.92) is solved by Coulomb’s
law, letting Φ(∞) = 0,

Φ(r, t) =
1

4πε0

∫
%(r′, t)

|r− r′|d
3r′ . (6.93)

It is important to be aware that, unlike in electrostatics, we need to know also A(r, t)

to be able to calculate the field ~E(r, t) through the formula (6.78).
It may seem strange that the scalar potential in Coulomb’s gauge is determined by

the instantaneous charge distribution: Moving an electron at a point r′, the potential
at a distant point, Φ(r), immediately captures this change, not being limited by the
speed limit for the transmission of information postulated by special relativity. The
explanation is, that Φ is not an observable physical quantity. To infer a change of %,
we must measure ~E , which depends on A as well. Somehow it is encoded into the
Coulomb gauge that, while Φ(r) instantly reflects all variations of %(r′), the vector
potential depends in a much more complicated way on these variations, such that the
combination −∇Φ− ∂A/∂t only responds to the variations after a long enough time
for information to arrive.

The advantage of the Coulomb gauge is that the scalar potential is simple to
calculate. The disadvantage is that, in addition to the non-causal appearance of Φ, it
is particularly difficult to calculate A: The differential equation for A in the Coulomb
gauge is (6.81).

In order to obtain an equation involving only the vector field and the current den-
sity, we use Helmholtz’s theorem to write the current density as the sum of transverse
and longitudinal components,

j = jT + jL , (6.94)

where the terms ’transverse’ and ’longitudinal’ are defined by the following two con-
ditions,

∇ · jT = 0 and ∇× jL = 0 . (6.95)

Calculating the rotation of the second equation (6.92) we see that the term con-
taining the gradient of the scalar potential vanishes. Hence,

−∇2A +
1

c2
∂2A

∂t2
= µ0jT , (6.96)

which shows that the transverse component of j is fully associated only with the vector
potential. Now, substituting this result into the second equation (6.92) we are left
with,

ε0
∂

∂t
∇Φ = jL . (6.97)

11The determination still leaves the freedom to add fields satisfying ∇2Θ = 0.
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That is, the longitudinal component of j is fully associated to the scalar potential.
The solution of Eq. (6.96) requires some preparation and will be given in the following
sections.

6.3.3 Green’s function

A useful tool for solving Laplace equations, such as derived in Eq. (6.87) or (6.96),
is the Green’s function. The dynamics of physical systems are often described by
differential equations of the type,

Lu(r) = %(r) , (6.98)

where L = L(r) is a linear differential operator. While this operator has a very generic
form, the behavior of a particular system depends on the choice of the function %.
The Laplace equation, where L(r) ≡ ∇2 and % is a particular charge distribution is
an example.

One method of solving this differential equation is to first solve the following
equation,

LG(r,x) = δ3(r− x) , (6.99)

where G(r,x) is called the Green function of the operator. In general, the Green
function is not unique. However, in practice, some combination of symmetry, bound-
ary conditions and/or other externally imposed criteria can make the Green function
unique.

Green functions are useful tools for solving wave and diffusion equations. In
quantum mechanics, the Green function of the Hamiltonian is intrinsically connected
to the concept of density of states. If the operator is invariant under translations,
that is, if L has constant coefficients with respect to r, then the Green function can
be taken as the convolution 12,

G(r,x) = G(r− x) . (6.100)

If such a function G can be found for the operator L, then multiplying Eq. (6.99) for
the Green function by %(x), and then integrating by the variable x, we obtain:

∫
LG(r,x)%(x)d3x =

∫
δ3(r− x)%(x)d3x = %(r) = Lu(r) , (6.101)

comparing the result with the Eq. (6.98). As we assume, that the operator L = L(r)
is linear and acts only on the variable r (and not on the integration variable x), we
can put L out of the integral on the right side. We conclude,

u(r) =

∫
G(r,x)%(x)d3x . (6.102)

Hence, we can obtain the function u(r) from the Green function G(r,x), determined
by Eq. (6.99), and the source term %(x).

12In this case, the Green function is the same as the pulse response in the theory of time-
independent linear systems.
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The Green function, also called the fundamental solution associated with the op-
erator L, can be considered as the inversion of L ≡ G−1. Not every operator L
admits a Green function. In practice, not only calculating the Green function can be
difficult for a particular operator, but also evaluating the integral in Eq. (6.102). In
Exc. 6.3.8.8 we will get to know a Green function of the wave equation.

Example 61 (Solving the Laplace equation by Green’s method): The
Laplace equation is,

∇2Φ(r) = −ε−1
0 %(r) .

The Green function,

G(r, r′) = G(r− r′) = − 1

4π|r− r′| ,

resolves the Poisson equation,

∇2G(r− r′) = δ3(r− r′) .

Therefore, the solution of the Laplace equation is,

Φ(r) =
1

4πε0

∫
%(r′)d3r′

|r− r′| .

To solve the wave equations (6.90), we need to find the Green function for a spatio-
temporal differential operator L(r, t) = �. We will do this in the example 62, but for
now, in the following section, we will adopt more empirical arguments.

6.3.4 Retarded potentials of continuous charge distributions

In the Lorentz gauge Φ and A satisfy the inhomogeneous wave equations (6.90) incor-
porating a ’source’ term. We will use in the following exclusively the Lorentz gauge
within which the entire electrodynamics comes down to solving (6.90).

But before that, let us take a look at the static situation, where the equations
(6.90) reduce to Poisson equations,

∇2Φ = −ε−1
0 % and ∇2A = −µ0j , (6.103)

with the known solutions,

Φ(r) =
1

4πε0

∫
%(r′)

|r− r′|d
3r′ and A(r) =

µ0

4π

∫
j(r′)

|r− r′|d
3r′ . (6.104)

In the dynamic case, the charge confined in the volume dV ′ (see Fig. 6.10) can
move, but for the information on this movement to reach the point of observation
r it takes a time determined by the propagation velocity of the light: |r − r′|/c.
Introducing the distance R between the position of the charge and the observation
point and the time retardation tr by,

R ≡ r− r′ and tr ≡ t− R
c , (6.105)
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Figure 6.10: Geometry of source and the observation point.

we expect the following generalization of the equation (6.104),

Φ(r, t) =
1

4πε0

∫
%(r′, tr)

R
d3r′ and A(r) =

µ0

4π

∫
j(r′, tr)

R
d3r′ , (6.106)

called retarded potential.
The argument given above seems reasonable, but does not represent a stringent

derivation, which will be given in the following. In fact, the same argument applied
to the fields ~E and ~B would give false results, as we shall see later.

To verify the correctness of the assertion (6.106) we can simply show that it
satisfies the wave equation (6.90) and the Lorentz gauge (6.89). However, this is not
trivial, since the integral expressions depend on r explicitly (via the distance R in
the denominator) and implicitly (via the retarded time td). Here, we present the
calculation for the scalar potential,

∇rΦ(r) =
1

4πε0

∫
∇r

%(r′, t− |r−r
′|

c )

|r− r′| d3r′ (6.107)

=
1

4πε0

∫ [
1

R
∇r%+ %∇r

1

R

]
d3r′ =

1

4πε0

∫ [
1

R

−%̇
c

R

R
+ %
−R

R3

]
d3r′ .

The divergence of the gradient,

∇2
rΦ(r) =

1

4πε0

∫ [−%̇
c

(
∇r ·

R

R2

)
− R

R2
·
(∇r%̇

c

)
− (∇r%) · R

R3
− %

(
∇r ·

R

R3

)]
d3r′

=
1

4πε0

∫ [

�
�
��−%̇

c

1

R2
− R

R2
·
(−%̈R
c2R

)
−
�������
(
− %̇R
cR

)
· R

R3
− %4πδ3(R)

]
d3r′

=
1

4πε0

∫ [
%̈

c2R
− 4π%δ3(R)

]
d3r′ =

1

c2
∂2Φ

∂t2
− %(r, t)

ε0
, (6.108)

where we replaced in the last line the integral of %̈/c2R by the expression (6.106),
reproduces the wave equation. In Exc. 6.3.8.9 we verify that the retarded potentials
(6.106) satisfy the Lorentz gauge.

It is interesting to note that the same calculation can be made for advanced times,
where the potential would be affected by a future movement of the charge, ta = t+ R

c .
But this would violate causality.
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Example 62 (Resolution of the wave equation by the Greens func-
tion): We showed in the previous section that in the Lorentz gauge, given
the sources % and j, all we have to do to find the scalar and vector potentials is
to solve wave type differential equations (6.87),

∇2ψ(r, t)− 1

c2
∂2ψ(r, t)

∂t2
= f(r, t) ,

where ψ is a variable to denote the fields Φ or A and f to denote the sources %
or j. First, we want to find a particular solution of this equation. To this end,
we use the Green function G(r, t, r′, t′), which by definition satisfies,

∇2G(r, t, r′, t′)− 1

c2
∂2

∂t2
G(r, t, r′, t′) = δ(3)(r− r′)δ(t− t′) .

We can perform the Fourier transform with respect to the variable t and obtain,

∇2g(r, ω, r′, t′) +
ω2

c2
g(r, ω, r′, t′) = δ(3)(r− r′)

eıωt
′

2π
,

where we used the integral representation of the Dirac delta function, i.e.,

δ(t− t′) =
1

2π

∫ ∞
−∞

e−ıω(t−t′)dω

and we defined,

G(r, t, r′, t′) ≡
∫ ∞
−∞

e−ıωtg(r, ω, r′, t′)dω .

As we will explain later, instead of solving the above differential equation, we
will modify it:

∇2gη(r, ω, r′, t′) + (k0 + ıη)2gη(r, ω, r′, t′) = δ(3)(r− r′)
eıωt

′

2π
,

with k0 ≡ ω/c assuming positive and negative values for ω: We can now take
the Fourier transform with respect to the variable r and obtain,

−k2ḡη(k, ω, r′, t′) + (k0 + ıη)2ḡη(k, ω, r′, t′) =
e−ık·r

′+ıωt′

(2π)4
,

where we used,

δ(3)(r− r′) =
1

(2π)3

∫
R3

eık·(r−r′)d3k ,

and defined,

gη(r, ω, r′, t′) ≡
∫
eık·rḡη(k, ω, r′, t′)d3k .

Hence,

ḡη(k, ω, r′, t′) =
e−ık·r

′+ıωt′

(2π)4[−k2 + (k0 + ıη)2]
,

and therefore,

gη(r, ω, r′, t′) =

∫
e−ık·(r−r′)+ıωt′

(2π)4[−k2 + (k0 + ıη)2]
d3k .
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Note that, if we had not modified the original equation (i.e. set η = 0), the
integral above would not converge, and we could not find a Green function by
the present method. Now, however, the Green function is,

Gη(r−r′, t−t′) =

∫ ∞
−∞

e−ıωtgη(r, ω, r′, t′)dω =

∫
d3k

∫ ∞
−∞

dω
eık·(r−r′)−ıω(t−t′)

(2π)4[−k2 + (k0 + ıη)2]
,

or yet,

Gη(r, t) =

∫
d3k

∫ ∞
−∞

dω eık·r−ıωt

(2π)4[−k2 + (k0 + ıη)2]
=

1

(2π)4

∫ ∞
−∞

dωe−ıωt
∫

d3k eık·r

[k2 − (k0 + ıη)2]
.

In polar coordinates, choosing the orientation of the k-vector space such that
kz is parallel to the vector r,∫
d3k

eık·r

[k2 − (k0 + ıη)2]
=

∫ ∞
0

k2dk
1

[k2 − (k0 + ıη)2]

∫ 2π

0

dφk

∫ π

0

dθk sin θke
ık·r

=

∫ ∞
0

dk
k2

[k2 − (k0 + ıη)2]

∫ 2π

0

dφk

∫ π

0

dθk sin θke
ıkr cos θk

=

∫ ∞
0

dk
2πk2

[k2 − (k0 + ıη)2]

∫ 1

−1

dueıkru

=
2π

ır

∫ ∞
0

dk
k

[k2 − (k0 + ıη)2]
(eıkr − e−ıkr) ,

where we used the substitution u ≡ cos θk. Since,∫ ∞
0

dk
ke−ıkr

[k2 − (k0 + ıη)2]
= −

∫ 0

−∞
dk

keıkr

[k2 − (k0 + ıη)2]
,

we can write,∫
d3k

eık·r

[k2 − (k0 + ıη)2]
=

2π

ır

∫ ∞
−∞

dk
keıkr

[k2 − (k0 + ıη)2]
.

The poles of this integral are given by,

Z± = ±(k0 + ıη) .

We consider the integral in the complex plane:∮
C

ZeırZ

(Z − Z+)(Z − Z−)
dZ ,

where the contour is closed over the upper complex half-plane. When η → 0+

[see Fig. 6.11(a)], we get,∮
C

ZeırZ

(Z − Z+)(Z − Z−)
dZ = 2πı

Z+e
ırZ+

Z − Z+
= ıπeık0r .

When η → 0− [see Fig. 6.11(b)], we get,∮
C

ZeırZ

(Z − Z+)(Z − Z−)
dZ = ıπe−ık0r .
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Figure 6.11: Illustration of the integration path.

But, with the closed contour over the upper complex half-plane,∫ ∞
−∞

dk
keıkr

[k2 − (k0 + ıη)2]
=

∮
C

ZeırZ

(Z − Z+)(Z − Z−)
dZ = ıπe±ık0r .

With these results, we can conclude that,∫
d3k

eık·r

[k2 − (k0 + ıη)2]
=

2π2

r
e±ık0r ,

and hence,

G±(r, t) = − 1

(2π)4

∫ ∞
−∞

dωe−ıωt
2π2

r
e±ık0r = − 1

8π2r

∫ ∞
−∞

dωe−ıω(t∓ r
c

) = − 1

4πr
δ(t∓ r

c
) .

Thus, we also have,

G±(r− r′, t− t′) = − 1

4π

1

|r− r′|δ(t− t
′ ∓ |r−r′|

c
) .

There are, therefore, two possible solutions to the problem:

ψ(r, t) =

∫
d3r′

∫ ∞
−∞

dt′G±(r− r′, t− t′)f(r′, t′)

= − 1

4π

∫
d3r′

|r− r′|

∫ ∞
−∞

dt′δ(t′ − t± |r−r′|
c

)f(r′, t′) = − 1

4π

∫
d3r′

f(r′, t∓ |r−r′|
c

)

|r− r′| .

In this case, we will use retarded rather than advanced solutions, i.e.,

Φ(r, t) =
1

4πε0

∫
%(r′, t− |r−r′|

c
)

|r− r′| d3r′ and A(r, t) =
µ0

4π

∫
j(r′, t− |r−r′|

c
)

|r− r′| d3r′ .

6.3.5 Retarded fields in electrodynamics and Jefimenko’s equa-
tions

From the retarded potentials (6.106) we can determine the fields through equations
(6.78),

~E(r, t) = −∇rΦ−
∂A

∂t
= − 1

4πε0

∫ [
1

R

−%̇
c

R

R
+ %
−R

R3

]
d3r′ − µ0

4π

∫
j̇(r′, tr)

R
d3r′ ,
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using the result (6.107). With c2 = 1/ε0µ0 we obtain the time-dependent generaliza-
tion of Coulomb’s law,

~E(r, t) =
1

4πε0

∫ [
%(r′, tr)

R2
êR +

%̇(r′, tr)

cR
êR −

j̇(r′, tr)

c2R

]
d3r′ . (6.109)

In static situations the second and third term cancel, %(r′, t′) = %(r′) becomes inde-
pendent of time, and we recover the electrostatic Coulomb law.

We now calculate the magnetic field via the rotation,

~B(r, t) = ∇r ×A =
µ0

4π

∫ [
1

R
(∇r × j)− j×∇r

(
1

R

)]
d3r′ . (6.110)

With,

[∇r × j(r′, t− R
c )]x =

∂jz
∂y
− ∂jy

∂z
= j̇z

∂tr
∂y
− j̇y

∂tr
∂z

(6.111)

= −1

c

(
j̇z
∂R

∂y
− j̇y

∂R

∂z

)
=

[
1

c
j̇×∇rR

]

x

=

[
1

c
j̇× R

R

]

x

.

Thus, the time-dependent generalization of the Biot-Savart law is,

~B(r, t) =
µ0

4π

∫ [
j(r′, tr)

R2
+

j̇(r′, tr)

cR

]
× R

R
d3r′ . (6.112)

The equations (6.109) and (6.112) are the (causal) solutions of Maxwell’s equations
published by Jefimenko in 1966. In practice, these equations are of limited utility,
since it is usually easier to calculate the retarded potentials, instead of going directly
to the fields. However, they provide the satisfying sensation of a closed theory. We
note that the simple replacement of the times t by tr made for the potentials in (6.106)
does not apply to the fields, as it would only produce the first terms of Jefimenko’s
expressions.

In the Excs. 6.3.8.10 and 6.3.8.11 we evaluate the fields for slow current variations.

6.3.6 The Liénard-Wiechert potentials

The goal now is to calculate the retarded electromagnetic potentials produced by a
moving point charge q along a predefined path w(t). The presence of the charge at a
time tr at a point w(tr), called the retarded position of this trajectory, has an impact
on an arbitrary point of space r at a time t given by,

t = tr + |r−w(tr)|
c . (6.113)

At a given instant of time t, the potentials Φ(r, t) and A(r, t) evaluated at the point
r depend only on a single point of the trajectory w(tr) occupied by the charge in the
past. The equation (6.106) now allows you to calculate the potentials. For a given
trajectory w(t′) the charge and current densities are parametrized by,

%(r′, t′) = qδ3(r′ −w(t′)) and j(r′, t′) = v%(r′, t′) . (6.114)
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Figure 6.12: Retardation of potentials.

However, we need the density at the retarded time tr
13,

%(r′, tr) = q

∫
δ3(r′ −w(t′))δ(t′ − tr)dt′ . (6.115)

We obtain,

Φ(r, t) =
q

4πε0

∫
%(r′, tr)

|r− r′| d
3r′ =

q

4πε0

∫ ∫
δ3(r′ −w(t′))

|r− r′| δ(t′ − tr)d3r′dt′ (6.116)

=
q

4πε0

∫
1

|r−w(t′)|δ(t
′ − (t− |r−w(t′)|

c ))dt′ ,

where spatial integration replaced r′ = w(t′).
To evaluate a function δ(g(x)) which depends on another function g(x), we make

the substitution,
u ≡ g(x) with du = dg

dxdx , (6.117)

such that, ∫
δ(g(x))dx =

∫
δ(u)

|dg/dx|du =
1∣∣∣dg(x0)
dx

∣∣∣
, (6.118)

where x0 is defined by u = g(x0) = 0. Applied to our problem, we identify,

u = g(t′) = t′ −
(
t− |r−w(t′)|

c

)
= t′ − tr . (6.119)

That is, the time when u = g(t′) = 0 is simply t′ = tr. Now, the time derivative is,

dg

dt′
= 1 +

1

c

d

dt′
|r−w(t′)| = 1− v(t′)

c
· r−w(t′)

|r−w(t′)| , (6.120)

with v ≡ ẇ. With this, the expression (6.116) becomes,

Φ =
q

4πε0

∫
1

|r−w(t′)|
δ(u)∣∣∣ dgdt′
∣∣∣
du =

q

4πε0

1

|r−w(tr)|
1

|1− v(tr)
c · r−w(tr)

|r−w(tr)| |
, (6.121)

13Can not simply replace t′ → tr in the argument of w(t′), because tr implicitly depends on w(t′)
via the expression (6.113).
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where the application of the δ(u) function comes down to replacing t′ by tr. Finally,
recalling the abbreviation R ≡ r−w(tr),

Φ(r, t) =
1

4πε0

qc

Rc−R · v and A(r, t) =
µ0

4π

qcv

Rc−R · v =
v

c2
Φ(r, t) , (6.122)

where the vector potential is obtained in an analogous way. These are the so-called
Liénard-Wiechert potentials 14. In Exc. 6.3.8.12 we calculate the potentials of a point
charge in uniform motion.

6.3.7 The fields of a moving point charge

Fields produced by a moving point charge are calculated from the potentials (6.122)
using (6.78). The calculation is complicated, because we must evaluate both, distance
and speed,

R = r−w(tr) and v = ẇ(tr) (6.123)

at the retarded time, which is implicitly defined by the equation,

R = |r−w(tr)| = c(t− tr) . (6.124)

We start with the gradient of the scalar potential (6.122),

∇Φ =
qc

4πε0

−1

(Rc−R · v)2
∇(Rc−R · v) , (6.125)

and evaluate both terms separately. Using (6.124) we find,

∇(Rc) = −c2∇tr , (6.126)

where we leave the calculation of the gradient of retarded time for later. Also, using
the rule (10.89)(ix), we find,

∇(R · v) = (R · ∇)v + (v · ∇)R + R× (∇× v) + v × (∇×R) . (6.127)

The first term of this expression gives,

(R · ∇)v(tr) = Rx
∂tr
∂x

dv

dtr
+Ry

∂tr
∂y

dv

dtr
+Rz

∂tr
∂z

dv

dtr
= a(R · ∇tr) , (6.128)

where a ≡ v̇ is the acceleration at the retarded time. The second term is,

(v · ∇)R = (v · ∇)r− (v · ∇)w = v − v(v · ∇tr) . (6.129)

Now, using,

∇× v =

(
∂tr
∂y

dvz
dtr
− ∂tr
∂z

dvy
dtr

)
êx + ... = −a×∇tr , (6.130)

14We get the same result from the argument, that light needs a finite time to cross the volume of
the charge distribution d3r′ = dV ′, such that the volume appears stretched at the time instant tr,

dV ′ −→ dV ′

1−êr·v/c
.
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the third term becomes,

R× (∇× v) = −R× (a×∇tr) . (6.131)

Finally, using,

∇×R = ∇× r
0−∇×w = v ×∇tr , (6.132)

the fourth term is,
v × (∇×R) = v × (v ×∇tr) . (6.133)

With these results the expression (6.127) becomes,

∇(R · v) = a(R · ∇tr) + v − v(v · ∇tr)−R× (a×∇tr) + v × (v ×∇tr) (6.134)

= v + (R · a− v2)∇tr ,

using in the last step the rule A× (B×C) = B(A ·C)−C(A ·B). Now, we calculate
∇tr,

∇tr = − 1
c∇R = − 1

c∇
√

R ·R = − 1

2c
√

R ·R
∇(R ·R) (6.135)

= − 1

cR
[(R · ∇)R + R× (∇×R)]

= − 1

cR
[(R · ∇)r− (R · ∇)w + R× (∇×R)]

= − 1

cR
[R− v(R · ∇tr) + R× (v ×∇tr)] = − 1

cR
[R− (R · v)∇tr)] .

To get (R · ∇)w we did a calculation similar to (6.128) and ∇ × R was already
calculated in (6.132). Solving the result (6.135) by ∇tr,

∇tr = − R

cR−R · v . (6.136)

Finally, the gradient of the scalar potential (6.125) is,

∇Φ =
1

4πε0

qc

(cR−R · v)3

[
(cR−R · v)v − (c2 − v2 + R · a)R

]
. (6.137)

A similar calculation for the temporal derivative of the vector potential gives the
result,

∂A

∂t
=

1

4πε0

qc

(cR−R · v)3

[
(cR−R · v)(−v +

R

c
a) +

R

c
(c2 − v2 + R · a)v

]
.

(6.138)
The rotation of the vector potential yields,

∇×A =
1

c2
∇× (Φv) =

1

c2
[Φ(∇× v)− v(∇Φ)] (6.139)

= −1

c

q

4πε0

1

(R · u)3
R× [(c2 − v2)v + (R · a)v + (R · u)a] ,
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using the expressions (6.130) and (6.137) and introducing the abbreviation u ≡
cêR − v.

Combining these results with equations (6.78), we find the fields,

~E(r, t) =
q

4πε0

R

(R · u)3
[(c2 − v2)u + R× (u× a) , (6.140)

and,

~B(r, t) = 1
c êR × ~E(r, t) . (6.141)

Obviously, the magnetic field of a point charge is always perpendicular to the electric
field and to the vector of the retarded point. The first term in ~E (involving (c2−v2)·u)
falls off like 1/R2. If the velocity v and the acceleration a were zero, this term survives
and reduces to the old electrostatic result (2.3). For this reason, this term is called
the generalized Coulomb field. The second term (involving R× (u× a)) falls off like
1/R and thus becomes dominant at large distances. As we will see in Sec. 8.4, this is
the term responsible for electromagnetic radiation.

Knowing the fields generated by the moving charge q we can, by the laws of the
Coulomb force and the Lorentz force, determine the force acting on a test particle Q
located at r and moving with velocity V,

F(r, t) =
qQ

4πε0

R

(R · u)3

{
[(c2 − v2)u + R× (u× a)] (6.142)

+
V

c
×
[
êR × [(c2 − v2)u + R× (u× a)]

]}
,

where r, u, v, and a are all evaluated at the retarded time. The entire classical
electrodynamics is contained in this equation because, since the charge is quantized,
we can apply the superposition principle and calculate the impact of any charge
distribution on a test particle Q. However, in view of the complexity of (6.142), the
necessary effort seems huge. The scheme 6.13 summarizes the fundamental laws of
electrodynamics.

Resolve the Excs. 6.3.8.13 to 6.3.8.16.

Example 63 (Electric and magnetic fields generated by a uniformly
moving charge): Letting a = 0 in (6.140),

~E(r, t) =
q

4πε0

R

(R · u)3
(c2 − v2)u ,

we can express the position of the charge at the retarded time by its constant
velocity, ẇ = v. We calculate using the definition of u,

Ru = cR−Rv = cR−Rẇ = c(r− vtr)− c(t− tr)v = c(r− vt) .

The square of the relationship |r− vtr| = c(t− tr) resolved by tr gives,

tr =
(c2t− r · v)±

√
(c2t− r · v)2 + (c2 − v2)(r2 − c2t2)

c2 − v2
,
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Figure 6.13: Organization chart of the fundamental laws of electrodynamics. Compare with
the corresponding charts in electrostatics Fig. 2.9 and magnetostatics Fig. 4.13.

where we only consider the sign −. With this we calculate,

R · u = Rc−R · v = c2(t− tr)− (r− vtr) · v = c2t− r · v − (c2 − v2)tr

=
√

(c2t− r · v)2 + (c2 − v2)(r2 − c2t2)

=
√

(c2 − v2)(r− vt)2 + [(r− vt) · v]2

=
√

(c2 − v2)d2 + (d · v)2 = d
√
c2 − v2 + v2 cos2 θ = dc

√
1− v2

c2
sin2 θ ,

where the abbreviation d ≡ r−vt is the vector between r and the actual position
of the particle and θ is the angle between d and v. Then,

~E(r, t) =
q

4πε0

1− v2/c2

(1− v2

c2
sin2 θ)3/2

êd
d2

.

Note that ~E points along the distance d. This is an extraordinary coincidence;
after all, the ’message’ came from the retarded position. Because of the sin2 θ
in the denominator, the field of a charge moving fast is flattened like a pancake
in the direction perpendicular to the motion (see Fig. 6.14). In the forward and
backward directions ~E is reduced by a factor (1 − v2/c2) with respect to the
field of a charge at rest; in the perpendicular direction is amplified by a factor
1/
√

1− v2/c2.

To get ~B we calculate,

êR =
r− vtr
R

=
(r− vt) + (t− tr)v

R
=

d

R
+

v

c
,

and hence,
~B = 1

c
(êR × ~E) = 1

c2
(v × ~E) .

The ~B-field lines form circles around the charge, as shown in Fig. 6.14. At low
velocities, v � c,

~E(r, t) =
q

4πε0

d

d2
, ~B =

µ0q

4π

v × êd
d2

.

we recover the laws of Coulomb and Biot-Savart for point charges.
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Figure 6.14: (a) Electric and magnetic field generated by of a point charge in uniform motion.
(b) Electric field seen from an observation point r fixed in space.

6.3.8 Exercises

6.3.8.1 Ex: Potentials, fields and the Lorentz gauge

Consider a scalar field and a vector field of the form,

Φ(r, t) = cd
r · êz
r3

eıωt and A(r, t) = ıkd
eıkr

r
eıωt êz .

where k = ω/c.

a. Calculate the corresponding fields ~B and ~E .
b. Show that for small r the given potentials satisfy the Lorentz gauge.

6.3.8.2 Ex: Fields, potentials, and the gauge transformation

Find the charge and current distributions producing the following potential,

Φ(r, t) = 0 and A(r, t) =
µ0k

4c
(ct− |x|)2êz Θ(|x| − ct) ,

where k = const.

6.3.8.3 Ex: Fields derived from potentials

Show that the differential equations for Φ and A can be written in a more symmetric
form as,

�Φ +
∂L

∂t
= − %

ε0
and �A−∇L = −µ0j ,

where L ≡ ∇ ·A + ε0µ0
∂Φ
∂t .

6.3.8.4 Ex: Fields derived from potentials

a. Find the fields and the charge and current distributions corresponding to,

Φ(r, t) = 0 and A(r, t) = − 1

4πε0

qt

r2
êr .

b. Use the gauge function χ = − 1
4πε0

qt
r to transform the potentials in (a), and com-

ment the result.
c. Check whether the potentials are in the Lorentz or in the Coulomb gauge.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_CalibreLorentz01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_CalibreLorentz02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_CalibreLorentz03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_CalibreLorentz04.pdf
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6.3.8.5 Ex: Fields derived from potentials

a. Suppose Φ = 0 and A = A0 sin(kx − ωt)êy, where A0, ω, and k are constants.

Find ~E and ~B, and verify, that they satisfy Maxwell’s equations in vacuum. What
conditions should be imposed to ω and k?
b. Check whether the potentials are in the Lorentz or in the Coulomb gauge.

6.3.8.6 Ex: Other gauges

Check the viability of a gauge defined by Φ ≡ 0 and a gauge defined by A ≡ 0.

6.3.8.7 Ex: Coulomb gauge

a. Show that the vector potential can be expressed by the magnetic field as,

A(r, t) = ∇×
∫ ~B(r′, t)

4π|r− r′|d
3r′ .

Show that, given by this expression, the potential vector satisfies the Coulomb gauge.
b. Show that for uniform and constant magnetic fields,

A(r, t) = − 1
2r× ~B .

Why can’t you use the formula in (a) to solve the problem?

6.3.8.8 Ex: Green function

Show that G(r, r′) = eık|r−r′|

4π|r−r′| is the Green function of the operator L = ∇2 + k2.

6.3.8.9 Ex: Gauge of retarded potentials

Confirm, that retarded potentials (6.106) are in the Lorentz gauge.

6.3.8.10 Ex: Jefimenko with constant current

Suppose that j(r) is constant in time, such that %(r, t) = %(r, 0) + %̇(r, 0)t. Demon-
strate the validity of Coulomb’s law with the charge density evaluated at the non-
retarded time.

6.3.8.11 Ex: Jefimenko with slowly varying current

Suppose a current density varying sufficiently slowly so that we can ignore all higher
derivatives of the Taylor expansion j(r, tr) = j(r, t)+(tr− t)j̇(r, tr)+ .... Demonstrate
the validity of the Biot-Savart law with the charge density evaluated at the non-
retarded time. This means that the quasi-static approximation is much better than
could have expected.

6.3.8.12 Ex: Potentials of a point charge in uniform motion

a. Calculate the potentials (6.122) produced by the uniform motion, w(t) = vt, of a
charge q.
b. Verify that these potentials satisfy the Lorentz gauge.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_CalibreLorentz05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_CalibreLorentz06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_CalibreLorentz07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_FuncaoDeGreen01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_CalibreLorentz08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LienardWiechert01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LienardWiechert02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LienardWiechert03.pdf
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6.3.8.13 Ex: Liénard-Wiechert potentials for a rotating charge

A particle of charge q moves circularly with constant angular velocity ω in the center
of the x-y-plane. At time t = 0 the charge is at the position (a, 0). Find the Liénard-
Wiechert potentials for the points of the z-axis.

6.3.8.14 Ex: Point charge moving on a straight line

Assume that a point charge q is constrained to move along the x-axis. Calculate the
fields at points on the axis in front of and behind the charge.

6.3.8.15 Ex: Charge on a hyperbolic motion

Determine the Liénard-Wiechert potentials for a charge on a hyperbolic motion,
i.e. w(t) = êx

√
b2 + c2t2.

6.3.8.16 Ex: Actio=reactio with the Lorentz force

Suppose that two charges in uniform motion, the first one along the x-axis and the
second along the y-axis, are at the origin at time t = 0. Calculate the reciprocal
Coulomb-Lorentz forces.

6.4 Further reading

J.D. Jackson, Classical Electrodynamics [ISBN]

D.J. Griffiths, Introduction to Electrodynamics [ISBN]

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LienardWiechert04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LienardWiechert05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LienardWiechert06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LienardWiechert07.pdf
http://isbnsearch.org/isbn/978-0-471-30932-1
http://isbnsearch.org/isbn/978-1-108-42041-9


236 CHAPTER 6. MAXWELL’S EQUATIONS



Chapter 7

Electromagnetic waves

The phenomenon of waves is usually introduced in undergraduate Physics courses.
We already discussed that, unlike classical longitudinal or transverse waves, electro-
magnetic waves do not require a propagation medium, but move through the vacuum
with the speed of light. And we showed that the wave equation is form-invariant to
the Lorentz, but not to the Galilei transform 1.

The electromagnetic waves are generated when charges change their positions.
Therefore, the theory of electromagnetic waves is also a consequence of electrodynamic
theory, which is summarized in the Maxwell equations. In this chapter we will consider
these equations as given and deduce from them the properties of electromagnetic
waves.

7.1 Wave propagation

By wave we mean the propagation of a perturbation f(r, t), which can be a scalar or
vector quantity. When it propagates in one dimension, the wave is described by the
wave equation,

∂2f

∂z2
=

1

v2

∂2f

∂t2
, (7.1)

where v is the propagation velocity of the wave. The most common waveform is the
sine wave,

f(z, t) = A cos(kz − ωt+ δ) = Re [Ãeı(kz−ωt)] = Re f̃(z, t) , (7.2)

in complex notation (often ornamented by a tilde) introducing the complex amplitude
Ã ≡ Aeıδ. The wave equation satisfies the superposition principle allowing for the
expansion of any wave type according to,

f̃(z, t) =

∫ ∞

−∞
Ã(k)eı(kz−ωt)dk . (7.3)

We will show in Exc. 7.1.8.1, that all functions satisfying f(z, t) = g(z ± vt) auto-
matically obey the wave equation. The most general solution of the wave equation is
given by,

f(z, t) = g1(z − vt) + g2(z + vt) . (7.4)

We show this in the following example directly generalizing to three dimensions.

1See script on Vibrations and waves (2020), Sec. 2.2.3.
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https://www.ifsc.usp.br/~strontium/Publication/Scripts/ClassicalMechanicsScript.pdf
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Example 64 (General solution of the wave equation): The three-dimensional
wave equation is,

1

c2
∂2f

∂t2
−∇2f = 0 .

Using for the Dirac function the representation, δ(3)(r−r′) = 1
(2π)3

∫
d3keık·(r−r′),

we can write,

f(r, t) =

∫
V∞

d3r′δ(3)(r− r′)f(r′, t)

=

∫
d3keık·r

∫
V∞

d3r′ e
−ık·r′

(2π)3
f(r′, t) =

∫
d3keık·rA(k, t) ,

where A(k, t) ≡
∫
V∞

d3r′ 1
(2π)3

e−ık·r
′
f(r′, t) is the Fourier transform of f . Ap-

plying the operator ∇2 − 1
c2

∂2

∂t2
to the expression for f gives,

0 =
1

c2
∂2f

∂t2
−∇2f =

1

c2

∫
d3keık·r

∂2A(k, t)

∂t2
−
∫
d3kA(k, t)∇2eık·r

=

∫
d3keık·r

[
1

c2
∂2A(k, t)

∂t2
+ k2A(k, t)

]
.

Hence,
1

c2
∂2A(k, t)

∂t2
+ k2A(k, t) = 0 .

The general solution of this equation can be written as,

A(k, t) = a(k)eıkct + b(k)e−ıkct ,

where a(k) and b(k) are arbitrary functions of k. Thus, the general solution for
f is given by,

f(r, t) =

∫
a(k)eık·r+ıkctd3k +

∫
b(k)eık·r−ıkctd3k .

Since f is a real quantity, f(r, t)∗ = f(r, t), we must have,

a(−k)∗ = b(k) ,

and,

f(r, t) = Re

[∫
2b(k)eık·r−ıkctd3k

]
.

The scalar functions eık·r−ıkct satisfy the wave equation for all k.

Waves of vector quantities must be characterized by a polarization vector ε̂ ≡ b/b.
Therefore, we define,

~E = Re ~̃E with ~̃E(r, t) = ε̂E0eık·r−ıkct , (7.5)

where E0 is real and ω ≡ kc, as the vector functions forming the functional basis for
the fields. These functions represent plane waves, because on a wavefront, the value

of ~̃E(r, t) is fixed, and this occurs only when eık·r−ıkct is constant 2.

2We shall see later that, when a wave passes through zones with different propagation velocities
v, the amplitude A and the polarization ε̂ may change. However, any change must be such that
F̃(z0, t) and the derivative F̃′(z0, t) are continuous at the transition point z0.
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To calculate the magnetic field from the complex representation of the electric
field, we write first,

~B = Re ~̃B with ~̃B(r, t) = ε̂′B0e
ık′·r−ık′ct , (7.6)

where ~̃B is the magnetic plane wave, since both ~̃E as well as ~̃B satisfy the same wave
equation. With Maxwell’s equations in the absence of sources, it is obvious that,

k = k′ , (7.7)

because the equations that couple ~̃E and ~̃B must be satisfied at every point of space
and at every instant of time.

7.1.1 Helmholtz’s equation

Electromagnetic waves differ from classical longitudinal or transverse waves in several
aspects. For example, they do not require a propagation medium, but move through
the vacuum at extremely high speed. Being exactly c = 299792458 m/s the speed of
light is so high, that the laws of classical mechanics are no longer valid. And because
there is no propagation medium, in vacuum all inertial systems are equivalent, and
this will have important consequences for the Doppler effect. We will show that the
electromagnetic wave equation almost comes out as a corollary of the theory of special
relativity.

We have shown earlier how the periodic conversion between kinetic and poten-
tial energy in a pendulum can propagate in space, when the pendulum is coupled to
other pendulums hung in an array, and that this model explains the propagation of
a pulse along a string. We also discussed, how electric and magnetic energy can be
interconverted in an electronic L-C circuit constiting of a capacitor (storing electrical
energy) and an inductance (a coil storing magnetic energy). The law of electrodynam-
ics describing the transformation of electric field variations into magnetic energy is
Ampère’s law, and the law describing the transformation of magnetic field variations
into electric energy is Faraday’s law,

∂~E
∂t
y ~B(t) ,

∂ ~B
∂t
y −~E(t) . (7.8)

Extending the L-C circuit to an array, it is possible to show that the electromagnetic
oscillation propagates along the array. This model describes well the propagation of
electromagnetic energy along a coaxial cable or the propagation of light in free space.

The electrical energy stored in the capacitor and the magnetic energy stored in
the coil are given by,

Eele = ε0
2 |~E|2 , Emag = 1

2µ0
| ~B|2 , (7.9)

where the constants ε0 = 8.854 · 10−12 As/Vm and µ0 = 4π · 10−7 Vs/Am are called
vacuum permittivity and vacuum permeability. The constant Z0 ≡

√
µ0/ε0 is called

vacuum impedance.
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Figure 7.1: Analogy between propagation of mechanical waves (above) and electromagnetic
waves (below).

From Maxwell’s equations in free space,

∇× ~B − ε0µ0∂t~E = 0 and ∇× ~E + ∂t ~B = 0 , (7.10)

deriving the first and inserting this into the second, and using the fact that the
divergences vanish,

1

c2
∂2~E
∂t2

=
1

ε0µ0c2
∂

∂t
∇× ~B = −∇× (∇× ~E) = −∇(∇ · ~E) +∇2~E = ∇2~E (7.11)

1

c2
∂2 ~B
∂t2

= − 1

c2
∂

∂t
∇× ~E = − 1

ε0µ0c2
∇× (∇× ~B) = −∇(∇ · ~B) +∇2 ~B = ∇2 ~B .

These are the homogeneous Helmholtz equations. We will check in Exc. 7.1.8.2, that

� electromagnetic waves (in free space) are transverse;

� the amplitude of the electric field, the magnetic field, and the direction of prop-
agation are orthogonal;

� the propagation velocity is the speed of light, because c2 = 1/ε0µ0.

7.1.2 The polarization of light

A consequence of the requirement, ∇ · ~E = 0 = ∇ · ~B, following from Maxwell’s
equations in vacuum is, that the electromagnetic waves are transverse with orthogonal
electric and magnetic fields. This is easy to see in the case of plane wave:

0 = ∇ · ~E = ~E0 · ∇eı(k·r−ωt) = ı~E0 · keı(k·r−ωt) , (7.12)

and analogously for ~B. We conclude,

k · ~E = 0 = k · ~B . (7.13)

In addition, from Faraday’s law,

~B0 ıωe
ı(k·r−ωt) = −∂

~B
∂t

= ∇× ~E = −~E0 ×∇eı(k·r−ωt) = −~E0 × ıkeı(k·r−ωt) . (7.14)

together with an analogous result obtained from Ampère-Maxwell’s law, we can sum-
marize,

~B = k
ω × ~E and ~E = − c2kω × ~B . (7.15)
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We conclude that the fields ~E and ~B and the propagation wavevector are all mutually
orthogonal for waves in free space. In the Excs. 7.1.8.3 and 7.1.8.4 we study the
polarization of light.

Example 65 (Circular polarization): Let us study the example of polarized
light,

~̃E = (Exêx + ıEyêy)eıkzz−ıωt .

If Ex = Ey, we have circular polarization. If Ex 6= Ey, the polarization is said to
be elliptical. The reason is easily seen by taking the real part of the plane wave:

~E = Re ~̃E = Exêx cos(kzz − ωt)− Eyêy sin(kzz − ωt) .

In the plane defined by z = z0, with z0 constant, the electric field vector describes
an ellipse as time passes; the ellipse is a circle if Ex = Ey.
Other polarizations are possible in free space although sometimes a bit more
difficult to realize in practice, for example, radial polarization,

~̃E = E0êreıkzz−ıωt and ~̃B = B0êθe
ıkzz−ıωt .

7.1.2.1 Polarization optics

A laser generally has a well-defined polarization, for example, linear or circular. The
polarizations can be transformed into each other through birefringent optical elements,
such as birefringent waveplates, Fresnel rhombs, or electro-optical modulators. Su-
perpositions of different polarizations can be separated with polarizing beam splitters.

It is important to distinguish between the polarization, which is always specified
in relation to a fixed coordinate system, and helicity, i.e. the rotation direction of the
polarization vector with respect to the propagation direction of the light beam. The
polarization of a beam propagating in z-direction can easily be expressed by a vector
of complex amplitude,

~E(r, t) =




a

b

0


 eık·r−ıωt =




1

e−ıφ|b|/|a|
0


 |a|e

ık·r−ıωt . (7.16)

The angle φ = arctan Im ab∗

Re ab∗ determines the polarization of the light beam. The
polarization is linear for φ = 0 and circular for φ = π/2. |b|/|a| then gives the
degree of ellipticity. A device rotating the (linear) polarization of a light beam (e.g. a
sugar solution) is described by the so-called Jones matrix (we restrict ourselves to the
xy-plane orthogonal to the propagation direction),

Mrotator(φ) =


 cosφ sinφ

− sinφ cosφ


 , (7.17)

where φ is the angle of rotation. For birefringent half-waveplates the rotation angle
is independent on the propagation direction. In devices called Faraday rotators, in
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contrast, the sign of the rotation angle depends on the propagation direction of the
laser beam,

MFaraday(φ) =


 cosφ k · êz sinφ

−k · êz sinφ cosφ


 , (7.18)

A polarizer projects the polarization to a specific axis. In case of a polarizer aligned
to the x-axis the Jones matrix is,

Mpolarizer =


1 0

0 0


 , (7.19)

while for an arbitrary axis given by the angle φ, it is,

Mpolarizer(φ) =


 cosφ sinφ

− sinφ cosφ




1 0

0 0




 cosφ sinφ

− sinφ cosφ



−1

. (7.20)

A birefringent crystal acts only on one of the two optical axes. Assuming that only
the y-axis is optically active, its Jones’s matrix is,

Mθ-waveplate =


1 0

0 eıθ


 . (7.21)

For θ = 2π/n we obtain a so-called λ/n-waveplate. When we rotate the waveplate
(and therefore the optically active about the inactive axis) by an angle φ, the Jones
matrix becomes 3,

Mθ-waveplate(φ) =


 cosφ sinφ

− sinφ cosφ




1 0

0 eıθ




 cosφ sinφ

− sinφ cosφ



−1

(7.22)

=


 cos2 φ+ eıθ sin2 φ − sinφ cosφ+ eıθ sinφ cosφ

− sinφ cosφ+ eıθ sinφ cosφ sin2 φ+ eıθ cos2 φ


 .

We use in most cases λ/4-waveplates,

Mλ/4(φ) =


 cos2 φ+ ı sin2 φ (−1 + ı) sinφ cosφ

(−1 + ı) sinφ cosφ sin2 φ+ ı cos2 φ


 (7.23)

or λ/2-waveplates,

Mλ/2(φ) =


 cos 2φ − sin 2φ

− sin 2φ − cos 2φ


 . (7.24)

Note that interestingly Mλ/2(φ)2 = I.
3See script on Optical spectroscopy (2020), Sec. 2.3.1.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumOpticsLab.pdf
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Example 66 (Generating circular polarization): We can use λ/4-waveplates
to create, from linearly polarized light, circularly polarized light. Choosing an
angle θ = 45◦ we get from (7.23),

Mλ/4(±π/4)

1

0

 =

 1
2

+ 1
2
ı ∓ 1

2
± 1

2
ı

∓ 1
2
± 1

2
ı 1

2
+ 1

2
ı

1

0

 =
eıπ/4√

2

 1

±ı

 .

Example 67 (Polarization behavior of upon reflection from a mirror): A

light beam reflected from a mirror under normal incidence does not changes

its polarization vector, but only its wavevector. This can be interpreted as

conservation of the angular momentum of light upon reflection. One consequence

of this is, that σ± light turns into σ± light upon reflection.

Example 68 (Action of birefringent waveplates as a function of prop-
agation direction): The Jones matrices for λ/n-waveplates do not depend on
the propagation direction, simply because the wavevector does not appear in
the expressions. That is, the polarization ε̂ = êx of a beam propagating to-
wards ±kêz is transformed by a Mλ/4(π/4) waveplate into σ+-polarized light
regardless of the propagation direction. A consequence of this is that a beam
traversing the waveplate Mλ/4(π/4) twice in the round-trip (e.g. being reflected
by a mirror) will undergo a rotation of amplitude by 90◦,

Mλ/4(π
2

)

1

0

 =

ı
0


Mλ/4(π

4
)Mλ/4(π

4
) =

 0 −1

−1 0

 .

This feature is often used to separate counterpropagating light fields via a po-
larizing beamsplitter.
On the other hand, for λ/2-waveplates, it is easy to check the following results,

Mλ/2(π
4

)

1

0

 =

 0

−1


Mλ/2(π

8
)

1

0

 = 1√
2

 1

−1

 .

In addition, for any φ,

Mλ/2(φ)Mλ/2(φ) =

1 0

0 1

 .

Thus, the double passage through a λ/2-waveplate cancels its effect.
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7.1.3 The energy density and flow in plane waves

The energy densities stored in the electric field and the magnetic field are given by,

uele = ε0
2 |~E|2 , umag = 1

2µ0
| ~B|2 . (7.25)

In the case of a monochromatic wave parametrized by ~E(r, t) = ~E0 cos(k · r− ωt) the

calculus (7.15) shows that | ~B| = k
ω |~E| = 1

c |~E|, such that the average energy density is,

〈u(r)〉 =
〈
|ε0
~E0 cos(k · r− ωt)|2

〉
= 1

2ε0|~E0|2 = 1
2µ0
| ~B0|2 , (7.26)

consistent with the expressions (6.58). When the wave propagates, it carries with it
this amount of energy. The energy flux density is calculated by the Poynting vector,

〈 ~S(r)〉 = 1
µ0

〈
~E(r, t)× ~B(r, t)

〉
= 1

2cε0|~E0|2êk . (7.27)

The absolute value is the intensity of the light field,

〈I(r, t)〉 = 〈| ~S(r, t)|〉 . (7.28)

In addition, a radiation field can have linear momentum. In vacuum, the momentum
is connected to the Poynting vector,

〈℘〉 =
〈
cε0|~E(r, t)|2êk

〉
= cε0|~E0|2êk . (7.29)

but in dielectric media things are different, as we will see later. The momentum density
is responsible for the radiation pressure. When light hits the surface A of a perfect
absorber, it transfers, during the time interval ∆t, the momentum ∆p = 〈℘〉Ac∆t to
the body. Thus, the pressure is,

P =
1

A

∆p

∆t
=
ε0E2

0

2
=
I

c
. (7.30)

Note that for a perfect reflector the pressure is doubled.
In Exc. 7.1.8.5 we show a trick how to quickly calculate the temporal average of

expressions containing products of oscillating field. We solve problems about the
radiative pressure in Excs. 7.1.8.6 to 7.1.8.8. In the Excs. 7.1.8.10 to 7.1.8.12 we
calculate u and ~S for various types of waves.

7.1.3.1 Spherical waves

Other wave geometries are possible (see Exc. 7.1.8.13). For example, it is easy to show

that spherical scalar fields of the type Φ(r, t) = Φ0
eı(kr−ωt)

r and spherical vector fields

of the type A(r, t) = A0
eı(kr−ωt)

r satisfy the wave equation,

0 = ∇2Φ− 1

c2
∂2Φ

∂t2
(7.31)

=
1

r2

∂

∂r

(
r2 ∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

) 0

+
1

r2 sin2 θ

∂2Φ

∂φ2

0

− 1

c2
∂2Φ

∂t2

= −k2Φ +
ω2

c2
Φ .
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This also applies to electric and magnetic fields,

~E(r, t)
?
= ~E0

eı(kr−ωt)

r
and ~B(r, t)

?
= ~B0

eı(kr−ωt)

r
. (7.32)

But it does not mean that these fields obey Maxwell’s equations. In fact, the simplest
possible spherical wave corresponds a the dipole radiation, which will be discussed in
the next chapter. We will find in Exc. 8.1.6.3 that the expressions for electric dipole
radiation satisfy Maxwell’s equations and in Exc. 7.1.8.14, that the expressions (7.32)
do not satisfy them. In Excs. 7.1.8.15 and 7.1.8.16 we will deepen this discussion.

7.1.4 Slowly varying envelope approximation

The slowly varying envelope approximation [6] (SVEA) is the assumption that the
envelope of a forward-traveling wave pulse varies slowly in time and space compared
to a period or wavelength. This requires the spectrum of the signal to be narrow-
banded. The SVEA is often used because the resulting equations are in many cases
easier to solve than the original equations, reducing the order of all (or some) of the
highest-order partial derivatives. But the validity of the assumptions which are made
need to be justified.

For example, consider the electromagnetic wave equation:

∇2E − µ0ε0
∂2E
∂t2

= 0 . (7.33)

If k0 and ω0 are the wave number and angular frequency of the (characteristic) carrier
wave for the signal E(r, t), the following representation is useful:

E(r, t) = Re [E0(r, t)eı(k0·r−ω0t)] . (7.34)

In the SVEA it is assumed that the complex amplitude E0(r, t) only varies slowly with
r and t. This inherently implies that E0(r, t) represents waves propagating forward,
predominantly in the k0 direction. As a result of the slow variation of E0(r, t), when
taking derivatives, the highest-order derivatives may be neglected [19]:

|∇2E0| � |k0 · ∇E0| and

∣∣∣∣
∂2E0
∂t2

∣∣∣∣�
∣∣∣∣ω0

∂E0
∂t

∣∣∣∣ . (7.35)

Consequently, the wave equation is approximated in the SVEA as,

2ık0 · ∇E0 + 2ıω0µ0ε0
∂E0
∂t
− (k2

0 − ω2
0µ0ε0)E0 = 0 . (7.36)

It is convenient to choose k0 and ω0 such that they satisfy the dispersion relation,
k2

0 − ω2
0µ0ε0 = 0. This gives the following approximation to the wave equation,

k0 · ∇E0 + ω0µ0ε0
∂E0
∂t

= 0 . (7.37)

This is a hyperbolic partial differential equation, like the original wave equation, but
now of first-order instead of second-order. It is valid for coherent forward-propagating
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waves in directions near the k0-direction. The space and time scales over which E0
varies are generally much longer than the spatial wavelength and temporal period of
the carrier wave. A numerical solution of the envelope equation thus can use much
larger space and time steps, resulting in significantly less computational effort.

Example 69 (Parabolic SVEA approximation): Assuming that the wave
propagation is dominantly in z-direction, and k0 is taken in this direction. The
SVEA is only applied to the second-order spatial derivatives in the z-direction
and time. If ∇⊥ = êx∂/∂x+ êy∂/∂y is the gradient in the x-y plane, the result
is [93],

k0
∂E0
∂z

+ ω0µ0ε0
∂E0
∂t
− 1

2
ı∇2
⊥E0 = 0 .

This is a parabolic partial differential equation. This equation has enhanced

validity as compared to the full SVEA: it represents waves propagating in direc-

tions significantly different from the z-direction. It is the starting point of the

theory of Gaussian beams, which will be studied in Sec. 7.4.1.

7.1.5 Plane waves in linear dielectrics and the refractive index

In dielectric (non-conducting) media we have % = 0 and j = 0 but ~̇E , ~̇B 6= 0. If the
medium is linear and homogeneous, the permittivity ε and the permeability µ are
constant, and we can substitute ~D = ε~E and ~H = µ−1 ~B. Thus, Maxwell’s equations
(6.56) become equal to those holding for vacuum (6.6) but with the generalizations
ε0 → ε and µ0 → µ. Therefore, the wave equations remain valid,

(
1

c2n

∂2

∂t2
−∇2

)
~E = 0 =

(
1

c2n

∂2

∂t2
−∇2

)
~B , (7.38)

with the propagation velocity now reading,

cn =
1√
εµ

=
c

n
, (7.39)

where we defined the index of refraction,

n ≡
√

εµ

ε0µ0
. (7.40)

In dielectric media, we must use the original definitions for the energy and momen-
tum densities and flows (6.58). The polarization and magnetization of the medium
may cause new phenomena. For example, in anisotropic optical media the Poynting
vector is not necessarily parallel to the wave vector. Resolve the Excs. 7.1.8.17 to
7.1.8.22.

7.1.6 Reflection and transmission by interfaces and Fresnel’s
formulas

So far we have considered homogenous media. An interesting question is, what hap-
pens when a field traverses regions characterized by different ε and µ. The boundary
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conditions can be discussed from the integral form of the Maxwell equations, which
follow immediately from the differential form via the theorems of Gauss and Stokes:

(i)
∮
∂S

~H · dl = d
dt

∫
S
~D · dS + Ienc

(ii)
∮
∂S

~E · dl = − d
dt

∫
S
~B · dS

(iii)
∮
∂V

~D · dS = Qenc

(iv)
∮
∂V

~B · dS = 0

. (7.41)

Let us consider two media with different permittivities ε1,2 and permeabilities µ1,2

joined together at an interface. The closed path ∂S around a surface S and the closed
surface ∂V around a volume V are chosen such as to cross the interface, as illustrated
in Figs. 2.10 and 4.14. The surface integrals in equations (i) and (ii) vanish in the
limit, where we choose the path ∂S very close to the interface.

From these equations, and as already shown in the derivations of the static equa-
tions (2.37), (2.39), (4.30), and (4.32), we have for linear media and in the absence of
free surface charges σf and free surface currents kf,

(i) 1
µ1

~B‖1 − 1
µ2

~B‖2 = |kf × ên| −→ 0

(ii) ~E‖1 − ~E‖2 = 0

(iii) ε1
~E⊥1 − ε2

~E⊥2 = σf −→ 0

(iv) ~B⊥1 − ~B⊥2 = 0

. (7.42)

We will use these equations to establish the theory of reflection and refraction.

7.1.6.1 Normal incidence

Electromagnetic waves can be guided by interfaces (waveguides). From Maxwell’s
equations we can deduce useful rules for the behavior of waves near interfaces. First,
we consider a plane wave propagating in the direction z within a dielectric medium
characterized by the refraction index n1,

~Ei(z, t) = êxEieı(kz1z−ωt) , ~Bi(z, t) = êy
n1Ei
c
eı(kz1z−ωt) . (7.43)

At position z = 0 there be a partially reflecting interface, as shown in Fig. 7.2(a). The
reflected part is,

~Er(z, t) = êxEreı(−kz1z−ωt) , ~Br(z, t) = −êy
n1Er
c

eı(−kz1z−ωt) . (7.44)

The negative sign comes from the relation ~B(r, t) = 1
ck × ~E(r, t). The transmitted

part is,

~Et(z, t) = êxEteı(kz2z−ωt) , ~Br(z, t) = êy
n2Et
c

eı(kz2z−ωt) . (7.45)
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Figure 7.2: Electric and magnetic fields reflected and transmitted at an interface under (a)
normal and (b) inclined incidence.

At the position z = 0 the total radiation must satisfy the boundary conditions.
Since under normal incidence, there are only parallel components,

~Ei(0, t) + ~Er(0, t) = ~Et(0, t) , 1
µ1

[ ~Bi(0, t) + ~Br(0, t)] = 1
µ2

~Bt(0, t) . (7.46)

Dividing all terms by e−ıωt,

Ei + Er = Et , n1

µ1c
[Ei − Er] = n2

µ2c
Et . (7.47)

Solving the system of equations,

Er
Ei

=
1− β
1 + β

,
Et
Ei

=
2

1 + β
, (7.48)

defining

β ≡ µ1n2

µ2n1
. (7.49)

Example 70 (Reflection on an air-glass interface): We consider an air-
glass interface, n1 = 1 and n2 = 1.5. Taking µ1 = µ2 = µ0 we have β = 1.5,
and we calculate that the interface reflects the energy,

R ≡ Ir
Ii

=
ε1c1|~Er|2

ε1c1|~Ei|2
=

(
1− β
1 + β

)2

= 0.04 ,

and transmits the energy,

T ≡ It
Ii

=
ε2c2|~Et|2

ε1c1|~Ei|2
=
ε2c2
ε1c1

(
2

1 + β

)2

= 0.96 .

We check R+ T = 1.

7.1.6.2 Inclined incidence and geometric optics

When the wave strikes perpendicular to the interface, the polarization of the light is
irrelevant. This is no longer true for inclined incidence, as shown in Fig. 7.2(b). In
this case the Eqs. (7.43)-(7.45) must be generalized,

~Em(r, t) = ~E0meı(km·r−ωt) , ~Bm(r, t) =
nm
c

k̂m × ~Em(r, t) , (7.50)
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for m = i,r,t. Obviously the frequency is the same for all waves, such that by inserting
each wave into the wave equation we find,

kici = krcr = ktct = ω , (7.51)

with cm ≡ c/nm and ci = cr ≡ c1 and ct ≡ c2. We now need to join the fields ~Ei + ~Er
and ~Bi + ~Br of one side of the interface with the fields ~Et and ~Bt of the other side at the
plane z = 0, respecting the boundary conditions (7.42). We get generic expressions,

(·)eı(ki·r−ωt) + (·)eı(kr·r−ωt) = (·)eı(kt·r−ωt) at z = 0 (7.52)

at all times t, where (·) ≡ εm~E⊥m, ~E‖m, ~B⊥m, 1
µm

~B‖m. Since the equation (7.52) must be

valid at any point (x, y) of the plane z = 0, the exponential factors must be equal,

eıki·r = eıkr·r = eıkt·r , (7.53)

that is,

ki · êx = kr · êx = kt · êx and ki · êy = kr · êy = kt · êy , (7.54)

that is, the wavevectors ki, kr, kt and the normal vector êz of the interface are in the
same plane. We can orient the coordinate system such that ki · êy ≡ 0 (see Fig. 7.2).
Defining the angles of incidence, reflection and refraction, we find,

km · êx = ki sin θi = kr sin θr = kt sin θt . (7.55)

With (7.51) we deduce the law of reflection:

θi = θr , (7.56)

and the law of refraction or Snell’s law:

sin θt

sin θi
=
n1

n2
. (7.57)

The equations (7.54), (7.56), and (7.57) form the basis of geometric optics.

7.1.6.3 Polarization behavior and Fresnel’s formulas

Going back to the condition (7.52) and eliminating the exponentials, we get,

for ~B‖m : 1
µ1

~Bi · êx,y + 1
µ1

~Br · êx,y = 1
µ2

~Bt · êx,y
for ~E‖m : ~Ei · êx,y + ~Er · êx,y = ~Et · êx,y
for ~E⊥m : ε1

~Ei · êz + ε1
~Er · êz = ε2

~Et · êz
for ~B⊥m : ~Bi · êz + ~Br · êz = ~Bt · êz .

(7.58)

We again orient the coordinate system such that ki · êy ≡ 0. We first assume,
that the polarization of the incident field is within the plane of incidence (that is, the
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plane spanned by the vectors ki and kr), that is, ~Ei · êy = 0 = ~Bi · êx. This is called
p-polarization. In this case, the conditions (7.58) become,

1
µ1

~Bi · êy + 1
µ1

~Br · êy = 1
µ1
Bi + 1

µ1
Br = 1

µ1c1
(Ei − Er) !

= 1
µ2c2
Et = 1

µ2
Bt = 1

µ2

~Bt · êy
~Ei · êx + ~Er · êx = Ei cos θi + Er cos θr = (Ei + Er) cos θr

!
= Et cos θt = ~Et · êx

ε1Ei sin θi + ε1Er sin θr = ε1(Ei − Er) sin θi
!
= ε2Et sin θt

0
!
= 0 . (7.59)

Using the abbreviation (7.49) and introducing another abbreviation,

α ≡ cos θt

cos θi
=

√
1− (n1/n2)2 sin2 θi

cos θi
, (7.60)

and solving the system of equations (7.59), we find Fresnel’s formula for p-polarization 4,

rp ≡
Er
Ei

∣∣∣∣
p

=
α− β
α+ β

=
n1 cos θt − n2 cos θi

n1 cos θt + n2 cos θi
and tp ≡

Et
Ei

∣∣∣∣
p

=
2

α+ β
. (7.61)

We now assume that the polarization of the incident field is perpendicular to the
plane of incidence, ~Ei · êx = 0 = ~Bi · êy. This is called s-polarization. In this case the
equations (7.58) yield,

1
µ1

~Bi · êx + 1
µ1

~Br · êx = 1
µ1c1

(Ei cos θi − Er cos θr)
!
= 1

µ2c2
Et cos θt = 1

µ2

~Bt · êx
~Ei · êy + ~Er · êy = Ei + Er !

= Et = ~Et · êy
0

!
= 0 (7.62)

Bi sin θi + Br sin θr = 1
c1

(Ei − Er) sin θi
!
= 1

c2
Et sin θt = Bt sin θt .

Similar to the case of p-polarization we obtain the Fresnel formulas for s-polarization,

rs ≡
Er
Ei

∣∣∣∣
s

= −1− αβ
1 + αβ

= −n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt
and ts ≡

Et
Ei

∣∣∣∣
s

=

√
αβ

1 + αβ
.

(7.63)
See also Exc. 7.1.8.23.

The power flux density incident on the interface is the projection of the intensity,
~S · êz. Therefore the intensities are,

Im = 1
2ε1cmE2

m cos θm , (7.64)

4Using Snell’s law (7.57) the Fresnel formulas can also be written as,

r2
p =

tan2(θi − θt)
tan2(θiθt)

and r2
s =

sin2(θi − θt)
sin2(θi + θt)

t2p =
sin 2θi sin 2θt

sin2(θi + θt) cos2(θi − θt)
and t2s =

sin 2θi sin 2θt

sin2(θi + θt)
.
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sFigure 7.3: (code) Fresnel formulas for the transmitted (blue) and reflected (red) amplitude

(left) and intensity (right). The dotted curve holds for s-polarization and the solid curve for

p-polarization.

with m = i, r, t. Thus the reflection and the transmission are for p-polarization,

Rp =

(
Er
Ei

)2

p

=

(
α− β
α+ β

)2

and Tp =
ε2c2
ε1c1

cos θt

cos θi

(
Et
Ei

)2

p

= αβ

(
2

α+ β

)2

= 1−Rp .

(7.65)
For s-polarization we have,

Rs =

(
Er
Ei

)2

s

=

(
1− αβ
1 + αβ

)2

and Ts =
ε2c2
ε1c1

cos θt

cos θi

(
Et
Ei

)2

s

= αβ

(
2

1 + αβ

)2

= 1−Rs .

(7.66)

7.1.6.4 The Brewster angle

For an angle of incidence of θi = 0◦ (α = 1) we recover the expressions (7.48). For
θi = 90◦ (α→∞), all light is reflected. Looking at the formula (7.61) it is interesting
to note the existence of an angle, where the reflection vanishes for the case of the
s-polarization. It is given by α = β, that is,

sin2 θi,B ≡ sin2 θi =
1− β2

(n1/n2)2 − β2
. (7.67)

θB is the Brewster angle. When µ1 ' µ2 we can simplify to,

θi,B = arcsin
1− β2

(n1/n2)2 − β2
' arctan

n2

n1
. (7.68)

That is, a p-polarized beam of light traveling in a vacuum and encountering a dielectric
with refractive index n2 = 1.5 under the angle of θi,B ≈ 56.3◦ is fully transmitted.
This is seen in Fig. 7.3(right), where the reflected intensity Ir/I0 of p-polarized light
vanishes at a specific angle, and illustrated in Fig. 7.4(a).

7.1.6.5 Internal total reflection and the Goos-Hänchen shift

We now consider a light beam traveling in a dielectric with refractive index n1 and
encountering an interface to an optically less dense medium, n2 < n1, as illustrated

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_FresnelFormulae.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_FresnelFormulae.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_FresnelFormulae.m
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in Fig. 7.4(b). Increasing the angle of incidence θi, according to Snell’s law (7.57) we
will come to a point, where the outgoing angle reaches θt = 90◦. Snell’s law gives the
critical angle for this to happen,

θi,tot = arcsin
n2

n1
. (7.69)

For an index of refraction n1 = 1.5 this angle is θi,tot ≈ 41.8◦. Above this angle,
θi > θi,tot, all energy is reflected by the optically denser medium. This phenomenon
of total internal reflection is used e.g. to guide light in optical fibers. Nevertheless, the
fields do not completely disappear in the medium 2 but form, a so-called evanescent
wave, which is exponentially attenuated and does not carry energy into the medium
2. A quick way to construct the evanescent wave consists in simply extending to the
complex domain the formulas obtained for inclined incidence of light on interfaces.
For θi > θi,tot,

sin θt =
n1

n2
sin θi >

n1

n2
sin θi,tot = sin θt,tot = 1 , (7.70)

Obviously θt can no longer be interpreted as an angle! We will show in Exc. 7.1.8.24
that, for the geometry illustrated in Fig. 7.4(b), the electric field generated in region
2 is given by,

~̃Et(r, t) = ~̃E0e−κzeı(kx−ωt) , (7.71)

where

κ ≡ ω
c

√
(n1 sin θi)2 − n2

2 and k ≡ ωn1

c sin θi . (7.72)

(7.71) is a wave propagating in x-direction, parallel to the interface, and being atten-

Figure 7.4: (a) Illustration of the effect of the Brewster angle on the polarization of light.
(b) Illustration of the Goos-Hänchen shift.

uated in z-direction. The penetration depth of is κ−1. Also in Exc. 7.1.8.24 we will
show that for both polarizations p and s the reflection coefficient is 1, which confirms
that there is no energy transported into the medium 2.

Example 71 (The Goos-Hänchen shift): The fact that the light wave pene-

trates region 2 up to a depth of κ−1 causes a transverse displacement of the wave

known as Goos-Hänchen shift named after Gustav Goos and Hilda Hänchen.

From Fig. 7.4 it is easy to verify that this displacement is of the order of magni-

tude D ' 2
κ

sin θi. It can be measured taking a beam of light with finite radial

extent.



7.1. WAVE PROPAGATION 253

7.1.7 Transfer matrix formalism

For a propagating wave the amplitude of the field at a point z = 0 can be related to
another point z via ~Ez = M~E0, where M is a phase factor of the type eıkz. A counter-
propagating wave (e.g. generated by partial reflection at an interface) suffers, over the
same distance, a phase shift of e−ıkz. Since both waves interfere, it is useful to set up
a model describing in a compact manner the amplitude and phase variations of the
two counterpropagating waves along the optical axis. The transfer matrix formalism
represents such a model.

Figure 7.5: Illustration of the transfer matrix formalism.

7.1.7.1 The T -matrix

Let us consider a beam of light propagating along the z-axis toward +∞ through an
inhomogeneous dielectric medium described by the refractive index n(z). Each inter-
face where the refractive index varies causes a partial reflection of the beam into the
opposite direction. The fields reflected at different positions z interfere constructively
or destructively depending on the accumulated phase. To address the problem mathe-
matically, we divide the medium into layers treated as homogeneous and delimited by
interfaces located at positions z, as shown in Fig. 7.5. We define the complex transfer
matrix or T -matrix describing the transition between from medium (1) to medium
(2) by,


E

+
2

E−2


 = T12


E

+
1

E−1


 . (7.73)

Here, the fields E± propagate toward ±∞. That is, the fields E+
1 and E−2 move toward

the interface and the fields E−1 and E+
2 move away from the interface. In (7.48) we

showed that the reflectivity and the transmissivity of the interface for a transition
from region (1) to region (2) are given by,

r12 =
n1 − n2

n1 + n2
and t12 =

2n1

n1 + n2
. (7.74)

Obviously, we have r21 = −r12 and t21 = n2

n1
t12. Therefore,

E+
2 = t12E+

1 + r21E−2 and E−1 = t21E−2 + r12E+
1 , (7.75)
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or introducing the scattering matrix or S-matrix,


E

+
2

E−1


 = S12


E

+
1

E−2


 with S12 =


r12 r12

r12 r12


 . (7.76)

Resolving (7.75) by the fields in medium (2),

E+
2 =

(
t12 − r12r21

t21

)
E+

1 + r21
t21
E−1 and E−2 = − r12t21 E

+
1 + 1

t21
E−1 . (7.77)

The matrix, therefore, is,

T12 =


t12 − r12r21

t21
r21
t21

− r12t21
1
t21


 =

1

2n2


n2 + n1 n2 − n1

n2 − n1 n2 + n1


 . (7.78)

The determinant is det T = t12
t21

= n1

n2
.

The simple propagation over a distance ∆z through a homogeneous medium simply
causes a phase shift, since E+

z = eıkzE+
0 and E−0 = eıkzE−z . The corresponding transfer

matrix is,

T∆z =


e

ık∆z 0

0 e−ık∆z


 . (7.79)

Absorption losses can attenuate the beam. This can be taken into account via an
absorption coefficient α in the matrix,

Tabs =


e
−α 0

0 eα


 . (7.80)

satisfying det T = 1.

7.1.7.2 AR and HR coating

Concatenating the matrices (7.78) and (7.79),M = T∆zT12Tabs, we can now describe
the transmission of a light beam through a dielectric layer with refractive index n2

and thickness ∆z [55, 56].

Example 72 (Anti-reflection coating): Here we consider the transition be-
tween a medium n0 through a thin layer n1 of thickness λ/4 to a medium n2.
The transition is described by the concatenation of three matrices,E+

2

0

 = T12Tλ/4T01

E+
0

E−0

 =

M11 M12

M21 M22

E+
0

E−0

 =

M11 − M12M21
M22

0

 E+
0 .
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The total matrix is,

M =
1

2n2

n2 + n1 n2 − n1

n2 − n1 n2 + n1

eıπ/2 0

0 e−ıπ/2

 1

2n1

n1 + n0 n1 − n0

n1 − n0 n1 + n0


=

ı

2n1n2

 n2
1 + n0n2 n2

1 − n0n2

−n2
1 + n0n2 −n2

1 − n0n2

 .

Finally, we obtain the fields,

E+
2 =

(
M11 −

M12M21

M22

)
E+

0 =
2ın0n1

n2
1 + n0n2

E+
0

n2
1≡n0n2−→ ın0

n1
E+

0

E−0 = −M21

M22
E+

0 =
n2

1 − n0n2

n2
1 + n0n2

E+
0

n2
1≡n0n2−→ 0 .

Choosing n2
1 ≡ n0n2 we can cancel out the reflection and maximize the trans-

mission. We check,

T =
It
Ii

=
ε2c2|E+

2 |2

ε0c0|E+
0 |2

=

n2
2
c2

c
n2

∣∣∣ 2ın0n1

n2
1+n0n2

∣∣∣2
n2
0
c2

c
n0

=
4n0n

2
1n2

(n2
1 + n0n2)2

R =
Ir
Ii

=
ε0c0|E−0 |2

ε0c0|E+
0 |2

=

∣∣∣∣n2
1 − n0n2

n2
1 + n0n2

∣∣∣∣2 = 1− T .

Fig. 7.6 shows the transmission through a stack of dielectric layers. The transfer
matrix is,

M = (T21T∆z2TabsT12T∆z1Tabs)
NT01 . (7.81)

We observe a large reflection band (600..660 nm) called one-dimensional photonic band
gap. Dielectric mirrors can, nowadays, achieve reflections up to R = 99.9995%, while
the reflectivity of metal mirrors is always limited by losses. Exc. 7.1.8.25 can be solved
using transfer matrices.

500 600 700 800
λ (nm)

0

0.5

1

R

Figure 7.6: (code) Reflection by a high reflecting mirror made of 10 layers with n1 = 2.4
and ∆z1 = 80 nm alternating with 10 layers with n2 = 1.5 and ∆z2 = 500 nm. The
absorption coefficient for each layer is supposed to be α = 0.2%. The beam impinges
from vacuum, n0 = 1.

The transfer matrix formalism can also be applied to modeling the passage of a
laser beam through a gas of two levels atoms periodically organized in one dimension

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_MultiHR.m
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like a stack of pancakes [91, 83]. One only has to consider that the variation of
the density of the gas along the optical axis generates a spatial modulation of the
refractive index 5.

Furthermore, we will show in Sec. 7.3.6 how to use the transfer matrix formalism
for impedance matching of optical cavities.

7.1.8 Exercises

7.1.8.1 Ex: Wave equation and Galilei transform

Show that any function of the form y(x, t) = f(x− vt) or y(x, t) = g(x+ vt) satisfies
the wave equation.

7.1.8.2 Ex: Plane waves

Consider a set of solutions for plane electromagnetic waves in vacuum, whose fields
(electric or magnetic) are described by the real part of the functions u(r, t) = Aeı(k·r−ωt),
with constant phase (k·r−ωt). In these expressions, k is the wavevector (determining
the propagation direction of the wave) and ω = vk is the angular frequency, where
v = 1/

√
εµ is the propagation velocity of the waves.

a. Show that the divergent u(x, t) satisfies: ∇ · u = ık · u;
b. Show that the rotation u(x, t) satisfies: ∇× u = ık× u;

c. Show that the waves are transverse and that the vectors ~E , ~B, and k are mutually
perpendicular.

7.1.8.3 Ex: Polarization of a wave in vacuum

A transverse electromagnetic wave propagates through an isotropic, non-conducting
medium without charges (vacuum) in positive z-direction. The projection of the
vector of the electric field on the plane x-y has the form,

~E = ~E0 sin(kz − ωt) = (E0x, E0y, 0) sin(kz − ωt) .

a. Illustrate the motion of the electric field vector by a scheme. How is the wave
polarized?
b. Show from Maxwell’s equations, that the magnetic field vector can be written as,

~B(r, t) =
1

ω
(k× ~E)

with the wavevector k = kêz.
c. Calculate the energy flux of the wave (Poynting vector) ~S(r, t) as a function of the
(phase) velocity of the wave c0. How does the phase change in other media (µ 6= µ0

and ε 6= ε0)? What does this mean for ~S(r, t).

5We will discuss this system in 6 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_EquacaoOnda01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_EquacaoOnda02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_PolarisaOnda01.pdf
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7.1.8.4 Ex: Jones matrices for a three-beam MOT

A three-beam magneto-optical trap (MOT) is characterized by the fact that each of
three linearly polarized laser beams passes through a λ/4-waveplate rotated in a way
to leave them circularly polarized. Then the beam traverses the MOT a first time,
behind the MOT it passes through a second waveplate, and being finally reflected by
a mirror, it makes all the way back, as shown in the figure. Show that the polarization
of the laser beam at the position of the mirror is always linear independently of the
rotation angle of the second waveplate.

Figure 7.7: One of three retroreflected beams of a MOT.

7.1.8.5 Ex: Temporal average of waves in complex notation

In complex notation there is a practical recipe for finding the temporal average of a
product of waves. Consider f(r, t) = cos(k·r−ωt+δa) and g(r, t) = cos(k·r−ωt+δb).
Show fg = 1

2Re (f̃ g̃∗). Note, that this only works, when the two waves have the same
wavevector k and the same frequency ω, but they may have arbitrary amplitudes and
phases. For example,

〈u〉 = 1
4Re (ε0

~̃E · ~̃E∗ + 1
µ0

~̃B · ~̃B∗) and 〈 ~S〉 = 1
2µ0

Re ( ~̃E × ~̃B∗) .

7.1.8.6 Ex: Radiation pressure of a plane wave

A plane electromagnetic wave impinges vertically on a plane.
a. Show that the radiation pressure exerted on a surface is equal to the energy density
in the incident beam. Does this ratio depend on the reflected part of the radiation?
b. Now consider a beam of small massive balls of mass m incident on a plane. What
is the relationship between the mean pressure on the surface and the kinetic energy
in this case?

7.1.8.7 Ex: Radiation pressure of solar light

Estimate the radiation pressure force exerted by the Sun on the Earth, and compare
this force to the gravitational force on Earth and at the atmospheric pressure. (The
intensity of sunlight at the Earth’s orbit is I = 1.37 kW/m2).
b. Repeat part (a) for Mars, which has an average distance of 2.28 · 108 km from the
Sun and has a radius of 3400 km.
c. What is the exerted radiation pressure when light strikes a perfect absorber (re-
flector)?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_PolarisaOnda02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_NotaComplexa01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_PressaoRadiativa01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_PressaoRadiativa02.pdf
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7.1.8.8 Ex: Radiation pressure of a point-like emitter onto a plane

A punctual and intense source of light isotropically radiates 1.0 MW. The source is
located 1.0 m above an infinite and perfectly reflecting plane. Determine the force
that the radiation pressure exerts on the plane.

7.1.8.9 Ex: Maxwell’s tensor for a plane wave

Find all the elements of Maxwell’s stress tensor for a monochromatic plane wave
traveling in z-direction and being linearly polarized in y-direction. Interpret the

result remembering that
←→
T represents a momentum flux density. How is

←→
T related

to the energy density in this case?

7.1.8.10 Ex: Superposition of waves

Suppose Aeıax +Beıbx = Ceıcx ∀x. Prove that a = b = c and A+B = C.

7.1.8.11 Ex: Poynting vector of a superposition of two waves

The electric fields of two harmonic electromagnetic waves of angular frequencies ω1

and ω2 are given by ~E1 = E10 cos(k1x− ω1t)êy and by ~E2 = E20 cos(k2x− ω2t+ δ)êy.
For the superposition of these two waves, determine
a. the instantaneous Poynting vector and
b. the temporal average of the Poynting vector.
c. Repeat parts (a) and (b) for an inverted propagation direction of the second wave,

i.e. ~E2 = E20 cos(k2x+ ω2t+ δ)êy.

7.1.8.12 Ex: Poynting vector of a standing wave

The electric field ~E(r, t) of a standing electromagnetic wave in vacuum be given by,

~E(r, t) = Re
(
E0êxeı(kz−ωt) − E0êxeı(−kz−ωt)

)
= 2E0 sin kz sinωtêx

with E0 ∈ R.
a. Determine the corresponding magnetic field ~B(r, t).

b. Calculate the Poynting vector ~S(r, t). What follows for the energy flow s̄ of the
standing electromagnetic wave in the temporal average, that is, calculate

s̄ =

∫
dt s∫
dt

,

where both integrals should be evaluated between t = 0 and t = 2π/ω.

7.1.8.13 Ex: Phase fronts of planar and spherical waves

Describes the phase front for (a) a plane wave and (b) a spherical wave.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_PressaoRadiativa03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_TensorMaxwell01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_FluxoOnda00.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_FluxoOnda01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_FluxoOnda02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_OndaEsferica00.pdf
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7.1.8.14 Ex: Fake spherical wave

We verified in class, that spherical waves of the form

~E±(r, t) = ~E0
1

r
eı(kr±ωt) and ~B±(r, t) = ~B0

1

r
eı(kr±ωt)

with ω = ck, c2 = 1/(ε0µ0) satisfy the Helmholtz equation. Argue, why neverthe-
less, they can not be electromagnetic waves. Check whether such waves satisfy the
homogeneous Maxwell equations.

7.1.8.15 Ex: Spherical wave

Consider a spherical electromagnetic wave,

~E(r, t) = ~E0(r, θ)eı(kr−ωt) and ~B(r, t) = ~B0(r, θ)eı(kr−ωt) .

Show that the validity of Maxwell’s equations for ∇ · ~E = 0 = ∇ · ~B for the case
of vanishing charge and current densities implies that ~E , ~B, and êr are mutually
orthogonal (transversality).

7.1.8.16 Ex: Spherical wave in a neutral dielectric medium

a. Show that spherical waves ~E(r, t) =
~E0
r e

ı(kr−ωt) solve the wave equation in a vac-
uum, when ω = ck. The Laplace operator in spherical coordinates is,

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2
∆θ,φ .

The second term only acts on the parts that depend on the angles. Verify that
∆θ,φ

~E ≡ 0.
b. Show that the wave equations have the form,

∇2~E − 1

c2
∂2~E
∂t2

=
1

ε0c2
∂2 ~P
∂t2

,

when the wave does not propagate in a vacuum, but in a neutral dielectric medium
(i.e. without free charges). Assume the simple case that the dielectric displacement
~D = ε0

~E + ~P has the form,
~P = ε0χ~E .

What is the form of the wave equations in this case? How do you change the phase
velocity c of the wave? You can identify the meaning of the quantity n ≡ √1 + χ?

7.1.8.17 Ex: Refraction in a bath of water

An observer stands at the edge of a basin filled with water down to a depth of
h = 2.81 m. He looks at an object lying on the bottom. At what depth h′ appears
the image of the object, if the direction of observation in which the observer perceives
the image forms with the normal direction to the water surface an angle of α = 60◦?
Prepare a scheme.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_OndaEsferica01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_OndaEsferica02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_OndaEsferica03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_Refracao01.pdf
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7.1.8.18 Ex: Poynting vector of a partially reflected wave

A plane wave ~Ein(z, t) which is linearly polarized in x-direction runs along the z-axis
from −∞ towards an interface (z = 0-plane). At the interface, a part r of the wave
is reflected without phase shift.
a. Give the amplitudes of the electric and the magnetic field in the half-space z < 0
in real numbers.
b. Give the Poynting vector ~S(z, t) and its time average.

7.1.8.19 Ex: Energy flow upon refraction

Two infinitely extended media with relative dielectric constants ε1 and ε2 and per-
meabilities µ1 = µ2 = µ0, that is, with refraction indices n1 =

√
ε1 and n2 =

√
ε2, be

separated by the z = 0-plane. Coming from the medium n1 traveling in x-direction a
linearly polarized plane wave with frequency ω and wavenumber k1 hits the interface
perpendicularly. The amplitude is E0.
a. Use the continuity of the normal components of ~D and ~B, as well as of the tangen-
tial components of ~E and ~H, at the interface to calculate the amplitudes of refracted
part and the reflected part of the incident wave.
b. The energy flux is defined by the temporal average of the real part of the Poynting
vector ~S: ~ϕ ≡ Re [~E × ~H∗]. Calculate the incident, reflected, and refracted energy
fluxes. What is the total flux in front and behind of the interface?
c. Determine the reflection coefficient r (the ratio between the absolute values of the
reflected and incident fluxes) and the transmission coefficient t (the ratio between the
absolute values of the transmitted and incident fluxes).

7.1.8.20 Ex: Birefringent crystal

An optically anisotropic crystal has in the x-direction the dielectric constant ε1 (that
is, the refractive index n1 = c

√
ε1µ1) and in the y-direction ε2, respectively, n2. A

linearly polarized plane wave with frequency ω propagating in z-direction impinges,
coming from the vacuum, at normal incidence on a disc of thickness d of this material
in such a way, that the plane of the polarization forms with the x and y-axes an angle
of 45◦. What is the polarization of the plane wave after the transition through the
disk? How should we choose d, so that the wave is circularly polarized? Express this
thickness in terms of the vacuum wavelength.

7.1.8.21 Ex: Glass cube

At the center of a glass cube of length d = 10 mm with the refractive index n = 1.5
there is a small spot. Which parts should the surfaces be covered so that the spot is
invisible from outside the cube regardless of the direction of vision? Neglect the light
refracted out of the cube after a first reflection inside the cube.

7.1.8.22 Ex: Total internal reflection

a. We consider the transition of a beam of light from an optically dense medium (1)
to a more dilute medium (2). Extending the theory of light refraction at interfaces

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_Refracao02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_Refracao03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_Refracao04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_{Refracao05}.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_Refracao06.pdf
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beyond the angle of total internal reflection (7.70), derive the expression for the elec-
tric field in the medium (2).
b. Noting that α [from Eq. (7.60)] is now imaginary, use the equation (7.61) to calcu-
late the reflection coefficient for the polarization parallel to the plane of incidence 7.
c. Do the same for polarization that is perpendicular to the plane of incidence.
d. In case of perpendicular polarization, show that the (real) evanescent fields are,

~E(r, t) = E0e−κz cos(kx−ωt)êy , ~B(r, t) = E0e−κz[κ sin(kx−ωt)êx+k cos(kx−ωt)êz] .

e. Verify that the fields in (d) satisfy all Maxwell equations without sources.
f. For the fields in (d), construct the Poynting vector and show that, on average, no
energy is transmitted in z-direction.

7.1.8.23 Ex: Fresnel formulae

Rewrite the Fresnel formulae (7.61) and (7.63) in terms of the wavevectors of the
incident, reflected and transmitted waves.

7.1.8.24 Ex: The Goos-Hänchen effect

The Goos-Hänchen shift is an optical phenomenon in which a linearly polarized light
beam with finite transverse extension suffers, under total internal reflection from a
plane interface, a small lateral displacement within the plane of incidence. The ef-
fect is due to an interference of the partial waves composing the finite-sized beam,
hitting the interface under different angles and thus undergoing different phase shifts
upon reflection. The sum of the reflected waves with different phase shifts form an
interference pattern transverse to the mean propagation direction leading to a lateral
displacement of the beam. Thus, the Goos-Hänchen effect is a coherence phenomenon
[40, 41, 48].
To describe this phenomenon quantitatively, we consider a linearly polarized light
beam of wavelength λ, with finite transverse size. This beam is fully internally re-
flected at the interface between two non-permeable media with refractive indices n1

and n2 < n1. The relationship between the reflected and incident amplitudes is a
complex number, which can be expressed by E ′′0 /E0 = eıφ(θi,θi,total) for the angle of
incidence θi > θi,total, where sin θi,total = n2

n1
.

a. Show that for a beam of ’monochromatic’ radiation in z-direction with an electric
field amplitude of E(x)eıkz−ıωt, where E(x) is smooth and finite in transverse direction
(albeit extending over many wavelengths), the first approximation in terms of plane
waves is,

~E(x, z, t) = ε̂

∫
A(κ)eıκx+ıkz−ıωtdκ ,

where ε̂ is a polarization vector and A(κ) is the Fourier transform of E(x) with respect
to κ around κ = 0 small compared to k. The finite-sized beam consists of plane waves
with a small range of angles of incidence centered around the valor predicted by
geometric optics.

7We observe 100% reflection, which is better than on a conductive surface.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_Refracao07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_Refracao08.pdf
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b. Consider the reflected beam and show that for θi > θi,total the electric field can be
expressed approximately as,

~Er(x, z, t) = ε̂rE(ξ − δξ)eıkr·r−ıωt+ıφ(θi) ,

where ε̂r is a polarization vector, ξ is the coordinate perpendicular to kr, which is the

reflected wavevector and δξ = − 1
k
dφ(θi)
dθi

.
c. With the Fresnel expressions for the phases φ(θi) and for the two polarization states
of the plane, show that the lateral displacements of the beams with respect to the
position predicted by geometric optics are,

Ds =
λ

π

sin θi√
sin2 θi − sin2 θi,total

and Dp = Ds
sin2 θi,total

sin2 θi − cos2 θi sin2 θi,total

.

7.1.8.25 Ex: Interfaces

A light field of angular frequency ω passes from a medium (1), through a slab of
thickness d representing a medium (2), to a medium (3). All three media are linear
and homogeneous. Calculate the transmission coefficient between the media 1 and 3
for normal incidence.

7.2 Optical dispersion in material media

7.2.1 Plane waves in conductive media

When there are free charges in the propagation medium, we can not neglect neither
%f nor jf in the Maxwell equations used to describe the wave propagation, because
the electric field of the wave will itself generate a current jf = ς ~E , where ς is the
conductivity introduced in Eq. (3.41). Thus, for linear media we must use the complete
equations (6.6).

For a homogeneous and linear medium, the continuity equation gives,

∂%f

∂t
= −∇ · jf = −ς∇ · ~E = − ς

ε
%f , (7.82)

with the solution

%f(t) = e−(ς/ε)t%f(0) . (7.83)

Therefore, every initial free charge density %f(0) diffuses within a characteristic time
τ = ε/ς. This reflects the familiar fact that free charges in a conductor migrate to
its edges with a speed that depends on the conductivity ς. For a good conductor, the
relaxation time is much shorter than other characteristic times of the system, e.g. for
oscillatory systems τ � ω−1. In stationary situations we can assume, % = 0, such

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_Refracao09.pdf
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that the relevant Maxwell equations,

(i) ∇× ~B − εµ∂t~E = µς ~E
(ii) ∇× ~E + ∂t ~B = 0

(iii) ∇ · ~E = 0

(iv) ∇ · ~B = 0

, (7.84)

only differ from the Maxwell equations for dielectric media by the existence of the
term µς ~E .

Letting the rotation operator act on equations (i) and (ii) and exploiting the
disappearance of the field divergences we obtain generalized wave equations,

∇2~E = εµ
∂2~E
∂t2

+ ςµ
∂~E
∂t

and ∇2 ~B = εµ
∂2 ~B
∂t2

+ ςµ
∂ ~B
∂t

. (7.85)

These equations still accept plane wave solutions,

~E(z, t) = ~E0eı(k̃z−ωt) and ~B(z, t) = ~B0e
ı(k̃z−ωt) , (7.86)

but this time the wavevector is complex,

k̃2 = εµω2 + ıςµω , (7.87)

which can easily be verified by inserting a plane wave into the wave equations (7.85).
The root of this expression gives,

k̃ = k + ıκ with k ≡ ω
√
εµ

2

(√
1 +

( ς

εω

)2

+ 1

)1/2

and κ ≡ ω
√
εµ

2

(√
1 +

( ς

εω

)2

− 1

)1/2
. (7.88)

The imaginary part results in an attenuation of the wave in z-direction:

~̃E(z, t) = ~̃E0e−κzeı(kz−ωt) and ~̃B(z, t) = ~̃B0e
−κzeı(kz−ωt) . (7.89)

The typical attenuation distance, κ−1, called skin depth, measures the penetration
depth of the wave in a conductor, while the real part k determines the propagation
of the wave. As before, the equations (7.84)(iii) and (iv) exclude components perpen-
dicular to the interface. The wave only has transverse components, that is, parallel
to the interface, so that we can let the electric field be along êx,

~̃E(z, t) = Ẽ0êxe−κzeı(kz−ωt) and ~̃B(z, t) = B̃0êye
−κzeı(kz−ωt) . (7.90)

By the equation (7.84)(ii) we verify,

B̃0 =
k̃

ω
Ẽ0 . (7.91)
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Expressing the wavevector and the complex amplitudes by phase factors,

k̃ = Keıφ , Ẽ0 = E0eıδE , B̃0 = B0e
ıδB , (7.92)

with K, E0,B0 ∈ R, we finally find,

B0e
ıδB =

Keıφ

ω
E0eıδE , (7.93)

that is,

B0

E0
=
K

ω
=

√
k2 + κ2

ω
=

√

εµ

√
1 +

( ς

εω

)2

(7.94)

and

~E(z, t) = E0êxe−κz cos(kz − ωt+ δE) (7.95)

~B(z, t) = B0êye
−κz cos(kz − ωt+ δE + φ) ,

as illustrated in Fig. 7.8. Such a wave is called evanescent wave. From Eqs. (7.94)
and (7.88) we immediately deduce,

K
ς→0−→ ω

cn
and φ = arctan

κ

k

ς→0−→ 0 (7.96)

K
ς→∞−→ ∞ and φ

ς→∞−→ π
4 .

Do the Exc. 7.2.7.1 and 7.2.7.2.

Figure 7.8: Attenuation of a wave by a conducting medium.

7.2.1.1 Reflection by a conductive surface

In the presence of free charges and currents the boundary conditions derived in (7.42)
must be generalized,

(i) 1
µ1

~B‖1 − 1
µ2

~B‖2 = kf × ên

(ii) ~E‖1 − ~E‖2 = 0

(iii) ε1
~E⊥1 − ε2

~E⊥2 = σf

(iv) ~B⊥1 − ~B⊥1 = 0

, (7.97)



7.2. OPTICAL DISPERSION IN MATERIAL MEDIA 265

where σf is the density of free surface charges, kf is the density of free surface currents,
and ên the normal vector of the surface pointing into the direction of medium 1
(compare with Fig. 4.14).

We now assume that the interface at z = 0 separates the dielectric medium 1 from
the conductive medium 2. A monochromatic plane wave is partially reflected and
transmitted, as discussed above,

~̃Ei(z, t) = Ẽ0iêxe
ı(k1z−ωt) , ~̃Bi(z, t) = − 1

c1
Ẽ0iêye

ı(k1z−ωt)

~̃Er(z, t) = Ẽ0rêxe
ı(−k1z−ωt) , ~̃Br(z, t) = 1

c1
Ẽ0rêye

ı(k1z−ωt)

~̃Et(z, t) = Ẽ0têxe
ı(k̃2z−ωt) , ~̃Bt(z, t) = k̃2

ω Ẽ0têye
ı(k̃2z−ωt)

, (7.98)

Obviously, the transmitted wave penetrating the conductive medium is attenuated.
The boundary conditions at z = 0 become, for the considered case (~E⊥ = 0 = ~B⊥)

and with kf = 0,

(i) 1
µ1c1

(E0i − E0r) = k̃2
µ2ω
E0t

(ii) Ẽ0i + Ẽ0r = Ẽ0t

(iii) 0 = σf

(iv) 0 = 0 .

, (7.99)

Defining,

β̃ ≡ µ1k̃2

µ2k1
, (7.100)

we derive,
Ẽ0r

Ẽ0i

=
1− β̃
1 + β̃

and
Ẽ0t

Ẽ0i

=
2

1 + β̃
. (7.101)

The formulas are formally similar to (7.48), but they are complex. For a bad
conductor (ς = 0 → κ = 0) we recover the equation (7.48). For a perfect conductor
(ς = ∞ → κ = ∞ → β̃ = ı∞) we find Ẽ0r = −Ẽ0i and Ẽ0t = 0. That is, the
wave is fully reflected with a phase change of 180◦ 8.

7.2.2 Linear and quadratic dispersion

The refractive index may depend on the wavelength. Even the refractive index of air
exhibits dispersion, as shown in Fig. 7.9 9.

We consider a superposition of two waves,

Y1(x, t) + Y2(x, t) = a cos(k1x− ω1t) + a cos(k2x− ω2t) (7.102)

= 2a cos
[

(k1−k2)x
2 − (ω1−ω2)t

2

]
cos
[

(k1+k2)x
2 − (ω1+ω2)t

2

]
.

8The ’skin depth’ in silver (for optical frequencies) is in the order of 10 nm. For this reason, thin
layers of good conductors already represent good mirrors.

9The refractive index of air can be calculated by the formula n = 1 + (ns − 1) 0.00185097 P
1+0.003661 T

with

ns =
√

1 + 4.334446·10−4λ2

λ2−3.470339·10−3 + 1.118728·10−4λ2

λ2−1.394001·10−2 , where T is the temperature in Celsius and P the

atmospheric pressure in mbar.
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Figure 7.9: (code) Refractive index of air. The crosses were calculated by the Cauchy formula

(7.147), with A = 0.0002725 and B = 0.0059.

The resulting wave can be seen as a wave of frequency 1
2 (ω1 + ω2)t and wavelength

1
2 (k1 + k2) whose amplitude is modulated by an envelope of frequency 1

2 (ω1 − ω2)t
and wavelength 1

2 (k1 − k2)x.

In the absence of dispersion the phase velocities of the two waves and the propa-
gation velocity of the envelope, called group velocity, are equal,

c =
ω1

k1
=
ω2

k2
=
ω1 − ω2

k1 − k2
=

∆ω

∆k
= vg . (7.103)

But the phase velocities of the two harmonic waves may be different, c = c(k), such
that the frequency depends on the wavelength, ω = ω(k). In this case, the group
velocity also varies with the wavelength,

vg =
dω

dk
=

d

dk
(kc) = c+ k

dc

dk
. (7.104)

Often, this variation is not very strong, such that it is possible to expand around an
average value ω0 of the spectral region of interest,

ω(k) = ω0 +
dω

dk

∣∣∣∣
k0

· (k − k0) +
1

2

d2ω

dk2

∣∣∣∣
k0

· (k − k0)2

≡ ω0 + vg(k − k0) + β(k − k0)2

. (7.105)

Generally, vg < c, in which situation we speak of normal dispersion. But there
are situations of anomalous dispersion, where vg > c, e.g. close to resonances or when
the wave under study is a matter wave characterized by quadratic dispersion 10,
~ω = (~k)2/2m.

Example 73 (Rectangular wave packet with linear dispersion): As an
example we determine the shape of the wavepacket for a rectangular amplitude
distribution, A(k) = A0χ[k0−∆k/2,k0+∆k/2], subject to linear dispersion (expan-

10Since c = ω
c

= ~k
2m

< ~k
m

= vg .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_AirRefractionindex.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_AirRefractionindex.m
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Figure 7.10: (code) Gaussian amplitude distribution (a,b) and rectangular distribution (c,d)

in momentum space (a,c) and in position space (b,d).

sion up to the linear term in Eq. (7.105)). Via the Fourier theorem,

Y (x, t) =

∫ ∞
−∞

A(k)eı(kx−ωt)dk = A0

∫ k0+∆k/2

k0−∆k/2

eı(kx−ω0t+vg(k−k0)t)dk

= A0e
ı(k0x−ω0t)

∫ k0+∆k/2

k0−∆k/2

eı(k−k0)(x−vgt)dk

= A0e
ı(k0x−ω0t)

∫ ∆k/2

−∆k/2

e
ık(x− vgt

u
)
dk

= A0
eıu∆k/2 − e−ıu∆k/2

ıu
eı(k0x−ω0t) = 2A0

sin u∆k
2

u
eı(k0x−ω0t) ≡ A(x, t)eı(k0x−ω0t) .

The envelope A(x, t) has the shape of a ’sinc’ function, such that the wave
intensity is,

|Y (x, t)|2 = A2
0∆k2 sinc2 [∆k

2
(x− vgt)

]
.

Obviously, the wave packet is at any time t localized in space, as illustrated by

the lower graphs of Figs. 7.10. It moves with group velocity, vg, but it does not

spread.

The last example showed, that linear dispersion does not lead to spreading (or
diffusion) of a wavepacket, as opposed to quadratic dispersion, which we will show in
the following example.

Example 74 (Dispersion of a Gaussian wavepacket subject to quadratic
dispersion): Quadratic dispersion causes spreading of wavepackets. We show

this at the example of the Gaussian wavepacket, A(k) = A0e
−α(k−k0)2 , expand-

ing the dispersion relation (7.105) up to the quadratic term. Via the Fourier

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_TeoremaFourier.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_TeoremaFourier.m
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theorem,

Y (x, t) =

∫ ∞
−∞

A(k)eı(kx−ωt)dk = A0e
ı(k0x−ω0t)

∫ ∞
−∞

eı(k−k0)(x−vgt)−(α+ıβt)(k−k0)2dk

= A0e
ı(k0x−ω0t)

∫ ∞
−∞

e
ık(x− vgt

u
)−(α+ ıβt

v
)k2
dk

≡ A0e
ı(k0x−ω0t)

∫ ∞
−∞

eıku−vk
2

dk = A0

√
π
v
eı(k0x−ω0t)e−u

2/4v .

The absolute square of the solution describes the spatial energy distribution of
the packet,

|Y (x, t)|2 = A2
0

π√
vv∗

e−u
2/4v−u2/4v∗ = A2

0
π

x0

√
α/2

e−(x−vgt)2/x20 ,

with x0 ≡
√

2α

√
1 + β2

α2 t2. Obviously, for long times the pulse spreads with

constant velocity. Since the constant α gives the initial width of the pulse, we

realize that an initially compressed pulse spreads faster. Therefore, the angular

coefficient of the dispersion relation determines the group velocity, while the

curvature determines the spreading velocity. See upper graphs of Figs. 7.10.

Resolve the Excs. 7.2.7.3 to 7.2.7.5.

7.2.3 Microscopic dispersion and the Lorentz model

Obviously, the structure that we assume for the matter also influences its reaction
to electromagnetic waves, which interact differently with the charged components of
the matter. The planetary model proposed by E. Rutherford considers matter to
be made of atoms, which in turn are composed of bound electrons orbiting small
positively charged nuclei. On the other side, metals have free electrons. The inertia
of the charged particles (free or bound electrons, ions) being accelerated by incident
electromagnetic waves is the reason for the dispersion phenomena that we will treat
in the following sections.

Thomson scattering is the elastic scattering of light (photons) by free or quasi-free
electrically charged particles (that is, weakly bound as compared to photon energies).
A charged particle is prompted by the field of an electromagnetic wave to perform
harmonic oscillations within the plane spanned by the electric and the magnetic field
vectors. As the oscillation is an accelerated motion, the particle simultaneously re-
emits energy in the form of an electromagnetic wave with the same frequency (dipole
radiation). Thomson scattering does not consider photonic recoil, that is, there is
no transfer of momentum from the photon to the electron, which is only a good
assumption when the energy of the incident photons is small enough, that is, ~ω �
mec

2, so that the wavelength of the electromagnetic radiation is much longer than
the Compton wavelength λ� λC = h/mc ' 2.4 pm of the electron (which is the case
for optical wavelengths). For higher energies, it is necessary to take the recoil of the
electron into consideration (as done in the case of Compton scattering) 11.

11Thomson scattering can be considered the limiting case of Compton scattering for small photon
energies. The Thomson model holds for free electrons in a metal, whose resonant frequency tends,
due to the absence of restoring forces, to zero. Scattering by bound electrons is called Rayleigh
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7.2.3.1 Lorentz model

In classical physics the scattering of light by charges is described by the Lorentz model
[43]. Assuming a harmonic electric field, ~E(t) = ~E0e−ıωt, we derive a force acting on
an electron harmonically bound to a potential 12,

F = −e~E(t) (7.106)

with e the elementary charge. The equation of motion is that of a damped harmonic
oscillator:

mer̈ +meγω ṙ +meω
2
0r = −e~E(t) (7.107)

with the mass me of the electron, the damping γω (by collisions, radiative losses,
etc.), and a resonance frequency ω0. We note, that the damping may depend on the
excitation frequency.

After some time, when the transient processes are damped out, the electrons
oscillate with the angular frequency ω of the external field. For this inhomogeneous
solution we make the ansatz:

r(t) = ree
−ıωt (7.108)

with the constant complex amplitude re. Inserting this into the equation of motion,
we obtain for the atomic dipole moment induced by the electromagnetic field 13:

d(t) ≡ −er(t) =
e2/me

ω2
0 − ω2 − ıγωω

~E(t) ≡ αpol(ω)~E(t) , (7.109)

where we used the electric polarizability αpol introduced in (3.6) and relating the am-
plitudes of the field and the dipole moment. The imaginary term in the denominator
means that the oscillation of d is out of phase with ~E being delayed by an angle

ϕ = arctan
γωω

ω2
0 − ω2

, (7.110)

which is very small when ω � ω0 and approaches π when ω � ω0 [90]. This is
illustrated in Fig. 7.13(left).

The temporal average of the dipole moment is,

√
d2 = αpolE0

√
1
T

∫ T
0

cos2 ωtdt = αpolE0
√

1
2 ≡ d0

√
1
2 . (7.111)

To calculate the emitted radiation we must borrow a result from future lessons: From
the electromagnetic fields (8.40) of an oscillating dipole we will derive the expression
for the Poynting vector (8.44),

〈 ~S〉 = 1
µ0
〈~E × ~B〉 =

µ0d
2
0ω

4

16π2c

sin2 θ

r2
êr =

d2
0ω

4

32π2ε0c3
sin2 θ

r2
êr . (7.112)

scattering.
In practice, Thomson scattering is used to determine the electron density through the intensity and
temperature of the spectral distribution of scattered radiation assuming a Maxwell distribution for
the electron velocities.

12Let us imagine for the sake of illustration that the displacement of the electron from its equilib-
rium position generates (to first order) an elastic restoring force with resonances at certain frequen-
cies.

13See script on Vibrations and waves (2020), Sec. 1.3.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ClassicalMechanicsScript.pdf
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Obviously, the radiation is not isotropic, but concentrated in directions perpendicular
to the dipole moment. In fact, the spherical harmonic function (sin θ), responsible for
this toroidal angular distribution, is precisely the p-wave 14. The total power radiated
by the dipole can be derived from the Poynting vector,

P =

∫ 2π

0

∫ π

0

〈 ~S〉 · êrr2 sin θdθdφ =
µ0d

2
0ω

4

32π2c
2π

∫ π

0

sin3 θdθ =
µ0ω

4d2
0

12πc
, (7.113)

knowing
∫ π

0
sin3 xdx = 4

3 . This result is known as the Larmor formula.

7.2.3.2 Thompson and Rayleigh scattering

We now imagine that the dipole is excited by an incident wave of intensity,

I = 1
2ε0c~E2

0 , (7.114)

and scatters the radiation to a solid angle dΩ, such that the angular distribution of
scattered power is,

dP

dΩ
= |〈 ~S〉|r2 . (7.115)

We can now calculate the differential scattering cross section inserting the polariz-
ability (7.109),

dσ

dΩ
=
dP/dΩ

I
=
d2

0ω
4 sin2 θ

32π2ε0c3r2
r2 1

1
2ε0cE2

0

=
|αpol|2E2

0ω
4 sin2 θ

16π2ε2
0c

4E2
0

(7.116)

=

∣∣∣∣
e2/me

ω2
0 − ω2 − ıγωω

∣∣∣∣
2
ω4 sin2 θ

16π2ε2
0c

4
=

r2
eω

4 sin2 θ

(ω2
0 − ω2)2 + γ2

ωω
2
,

where we defined the abbreviation,

re ≡
1

4πε0

e2

mec2
≈ 2.8 · 10−15 m (7.117)

being the classical electron radius. The total cross section,

σ(ω) =

∫

R2

dσ

dΩ
dΩ =

8π

3
r2
e

ω4

(ω2
0 − ω2)2 + γ2

ωω
2
, (7.118)

describes a resonance of Lorentzian profile.
We have the following limiting cases:

� ω � ω0 Thomson scattering ,

� ω = ω0 resonance fluorescence ,

� ω � ω0 Rayleigh scattering .

14Y ±1
1 (θ, φ) = ∓ 1

2

√
3

2π
e±ıφ sin θ.
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A Thomson cross section follows in the limit of high energies in comparison with
the eigenfrequency, ω � ω0 � γω from the Lorentz model 15,

σThom =
8π

3
r2
e ≈ 6.65 · 10−29 m2 . (7.119)

Example 75 (Rayleigh scattering and the blue sky): We consider the scat-

tering cross section (7.118). For ω → ω0 we obtain a resonant amplification of

the cross session of ω2/γ2
ω. The resonances of the particles in the atmosphere

are in the blue region of the electromagnetic spectrum. Therefore, the visible

frequencies are ω � ω0, and the cross session is ∝ ω4. For this reason, the blue

region dominates. The sky just does not look violet, because the eyes are not

sensitive for these colors.

The dependence on the observation angle ∝ sin2 θ, where θ = ∠(ε̂,ks) is only

valid for polarized light. For non-polarized light, which can be understood as

a superposition of two waves with orthogonal polarization, the dependence is

∝ 1 + cos2 ϑ, where ϑ = ∠(k,ks).

Figure 7.11: Dependence of the Rayleigh and Mie scattering on the observation angle.

Rayleigh scattering dominates for molecules and small scattering objects, <

λ/10. Mie scattering is more important for > λ/10, e.g. water drops. This

type of scattering is governed by boundary conditions defined by the surfaces

of objects. The angular distributions are strongly oriented in forward direction,

particularly when the objects are large. Therefore, this type of scattering only

dominates at small angles with respect to the sun, where we observe a bleaching

of the blue color of the sky).

7.2.3.3 Atomic polarizability

In atoms, the damping rate γω is due to the radiative energy loss (given by Larmor’s
formula). It is calculated as the ratio between the classically radiated power and the
kinetic energy of the electron orbiting the nucleus,

γω =
P

Ekin
=
µ0e

2a2/12πc

meω2r2/2
, (7.120)

15A better approximation for small energies is obtained by expansion of the Klein-Nishina formula,

σ(ν) = σThom

(
1− 2α+ 56

5
α2 + . . .

)
with the factor α = hν

mec2
.
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where a = ω2r is the acceleration of the electron. We get [43] 16,

γω =
e2ω2

6πε0mec3
. (7.121)

Defining Γ ≡ γω0
and inserting into equation (7.109), we can calculate the polariz-

ability within the Lorentz model,

αpol = 6πε0c
3 Γ/ω2

0

ω2
0 − ω2 − ı(ω3/ω2

0)Γ
. (7.122)

Close to narrow resonances we can approximate (ω0 +ω)→ 2ω0 and (ω3/ω2
0)Γ→ ω0Γ

in the denominator of the formula (7.122). Hence, the polarizability simplifies to,

αpol

ε0
' 6π

k3
0

−1

ı+ 2∆/Γ
, (7.123)

defining the detuning ∆ ≡ ω − ω0. Resolve the Excs. 7.2.7.6 to 7.2.7.9.

7.2.4 Classical theory of radiative forces

The Lorentz model permits a classical calculation of the forces exerted by a radiation
wave on an electric dipole moment oscillating with the excitation frequency ω [48,
43] 17. With the dipole moment given by equation (7.109) and the polarizability
given by equation (7.122) we can write the dipolar interaction potential as the time-
average,

Udip(r) = −1

2
d · ~E = − 1

2ε0c
I(r)Reαpol , (7.124)

with the field intensity I = 2ε0c| ~̃E|2. The factor 1
2 takes into account the fact, that

the dipole moment is induced rather than permanent, as shown in equation (3.10).
Therefore, the potential energy of the atom in the field is proportional to the

intensity I(r) and the real part of the polarizability, which describes the in-phase
component of the dipolar oscillation, being responsible for the dispersive properties of
the interaction. The dipole force comes from the gradient of the interaction potential,

Fdip(r) = −∇Udip(r) =
1

ε0c
∇I(r)Reαpol . (7.125)

It is a conservative force proportional to the intensity gradient of the light field. As
illustrated in Fig. 7.12, below resonance (ω < ω0) the induced electric dipole will be

16In quantum mechanics we learn, that the rate for spontaneous emission is, Γ = d2k3/3πε0~.
This rate coincides with Eq. (7.121) when we assume an amplitude for the electron’s oscillation equal
to the size of the ground state of a harmonic oscillator,

d0 = er = e

√
~

meω
= d2

√
2 .

17In principle, we could also use Maxwell’s stress tensor.
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Figure 7.12: (a) Lorentz force on electric dipoles in an electrostatic field gradient. (b)
Orientation of induced dipoles in an electromagnetic field. (c) Phase-shift of a harmonic
oscillator with a resonance frequency at ω0 driven at frequency ω.

oriented parallel to the electric field such as to minimize its energy by seeking strong
field regions. Above resonance (ω > ω0) the orientation is reversed so that the dipole
can minimize its energy by seeking low field regions.

The power of the field absorbed by the dipolar oscillator (and reemitted as dipolar
radiation) is given by,

Pabs = ḋ · ~E = 2ωIm d̃ · ~̃E = − ω

ε0c
I(r)Imαpol . (7.126)

The absorption results from the imaginary part of the polarizability, which describes
the out of phase component of the dipolar oscillation. Considering the light as a
stream of photons with energy ~ω, the absorptive part can be interpreted in terms of
photon absorption processes followed by spontaneous reemission. The corresponding
scattering rate is,

Γsct(r) =
Pabs

~ω
=

1

~ε0c
I(r)Imαpol . (7.127)

We emphasize that these expressions are valid for any polarizable neutral par-
ticle exposed to an oscillating electric field, provided that saturation effects can be
neglected. That it, the expressions hold for atoms and molecules excited near or far
from resonances, as well as for a classical antenna 18.

Inserting the polarizability (7.122) in the expressions (7.124) for the dipolar po-
tential and (7.127) for the (Rayleigh) scattering rate we obtain, for the case of large
detunings in comparison to the transition linewidth, ∆� Γ, and negligible saturation,

Udip(r) = − 1

2ε0c
I(r)Re

6πε0c
3Γ/ω2

0

ω2
0 − ω2 − ı(ω3/ω2

0)Γ
(7.128)

' −3πc2

ω2
0

I(r)
Γ

ω2
0 − ω2

= −3πc2

2ω3
0

I(r)

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
,

18An important difference between quantum and classical oscillators is the possible occurrence of
saturation. When the intensity of the driving field is too high, the excited state becomes strongly
populated and the derived results are no longer valid. However, for large detunings we are far below
the saturation, such that the expressions can be used even for quantum oscillators.
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and

~Γsct(r) =
1

ε0c
I(r)Im

6πε0c
3Γ/ω2

0

ω2
0 − ω2 − ı(ω3/ω2

0)Γ
(7.129)

' −6πc2Γ2ω3

ω4
0

I(r)
1

(ω2
0 − ω2)2

=
−3πc2

2ω3
0

(
ω

ω0

)3

I(r)

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

.

These expressions exhibit two resonant contributions: In addition to the usual reso-
nance at ω = ω0, there is a so-called counter-rotating term resonant at ω = −ω0. In
most applications the radiation source is tuned relatively close to the resonance at ω0,
such that the counter-rotating term can be neglected, which simplifies the expressions
to,

Udip(r) =
3πc2

2ω3
0

Γ

∆
I(r) and ~Γsct(r) =

3πc2

2ω3
0

Γ2

∆2
I(r) . (7.130)

The obvious relationship between the scattering rate and the dipolar potential,

~Γsct =
Γ

∆
Udip , (7.131)

is a direct consequence of the profound relationship between the absorptive and dis-
persive responses of the oscillator. We furthermore emphasize the following relevant
points:

� The sign of the detuning: Below an atomic resonance (’red detuning’, ∆ < 0) the
dipolar potential is negative and the interaction attracts the atom to regions of
high intensity, e.g. toward the optical axis of a Gaussian light beam or towards
the anti-nodes of a standing light wave. Above the atomic resonance (’blue
detuning’, ∆ > 0) is the opposite; the atom is repelled out of high-intensity
regions.

� Intensity and detuning-dependence: The dipolar potential is ∝ I/∆, while the
scattering rate is ∝ I/∆2. Therefore, dipolar optical traps are generally realized
at large detunings and high intensities in order to reduce the scattering rate
while maintaining the potential depth.

7.2.4.1 Microscopic model of the susceptibility, anomalous dispersion

Until now we considered a single valence electron bound to a nucleus. If there are
several electrons, the relationship (7.109) must be generalized. Electrons located at
different orbitals of a molecule feel different spring constants fj , natural frequencies
ωj , and damping coefficients γj . In the presence of several electrons per molecule and

N molecules per volume unit, the polarization ~P is given by the real part of (3.12),

~̃P =
Nq2

m


∑

j

fj
ω2
j − ω2 − ıγjω


 ~̃E . (7.132)

In equation (3.20) we defined the electric susceptibility χε as proportionality constant

between the electric field and the polarization. In the case considered here, ~P is not
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proportional to ~E (strictly speaking, it is not a linear medium), because there is a

phase shift between ~P and ~E . But at least the complex polarization ~̃P is proportional

to the complex field ~̃E , which suggests the introduction of a complex susceptibility χ̃ε,

~̃P = ε0χ̃ε
~̃E . (7.133)

All manipulations made so far remain valid, if we assume that the physical polarization

is the real part of ~̃P, in the same way as the physical field is the real part of ~̃E . In

particular, the proportionality between ~̃D and ~̃E is the complex permittivity ε̃ =
ε0(1 + χ̃ε), and the complex dielectric constant (in this model) is,

ε̃ ≡ ε̃

ε0
= 1 +

Nq2

mε0

∑

j

fj
ω2
j − ω2 − ıγjω

. (7.134)

Generally, the imaginary part is despicable; however, when ω is very close to one of
the resonant frequencies ωj , it will play a crucial role, as we shall see later.

In a dispersive medium the wave equation for a given frequency is,

∇2 ~̃E = ε̃µ0
∂2 ~̃E
∂t2

. (7.135)

It admits plane wave solutions as before,

~̃E(z, t) = ~̃E0eı(k̃z−ωt) , (7.136)

with the complex wavenumber,

k̃ = ω
√
ε̃µ0 = ω

c

√
ε̃ . (7.137)

Writing k̃ in terms of its real and imaginary parts, k̃ = k+ıκ, the plane wave becomes,

~̃E(z, t) = ~̃E0e−κzeı(kz−ωt) . (7.138)

Obviously, the wave is attenuated (this is not surprising, since the damping absorbs

energy). Since the intensity is proportional to ~E2 (and consequently to e−2κz), the
quantity,

α ≡ 2κ (7.139)

is called absorption coefficient. The relationship,

I ∝ e−αz (7.140)

is called the Lambert-Beer law. However, the velocity of the wave is ω/k, and the
refraction index is,

n =
ck

ω
. (7.141)

In the present case k and κ have nothing to do with conductivity, as in the case
of Eq. (7.88); but they are determined by the parameters of our damped harmonic
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oscillator. For gases, the second term in (7.134) is small, and we can approximate the
square root (7.137) by the first term of the binomial expansion

√
1 + χ̃ε ' 1 + 1

2 χ̃ε.
Hence,

k̃ =
ω

c

√
ε̃ ' ω

c

(
1 +

χ̃ε
2

)
=
ω

c


1 +

Nq2

2mε0

∑

j

fj
ω2
j − ω2 − ıγjω


 . (7.142)

therefore,

n = Re
√
ε ' 1 +

Nq2

2mε0

∑

j

fj(ω
2
j − ω2)

(ω2
j − ω2)2 + γ2

jω
2

α =
2ω

c
Im
√
ε ' Nq2ω2

mε0c

∑

j

fjγj
(ω2
j − ω2)2 + γ2

jω
2

. (7.143)

In Fig. 7.13 we plot the refractive index and the absorption coefficient in the neigh-
borhood of one of the resonances ω0 = ωj . In most cases the refractive index gradually
increases with frequency, which is consistent with our experience in optics (Fig. 7.9).
However, near a resonance the refraction index drops abruptly. Being atypical, this
behavior is called anomalous dispersion. We observe that the region of anomalous
dispersion (ω1 < ω < ω2 in the figure) coincides with the region of maximum absorp-
tion. In fact, the material can be almost opaque in this spectral region. The reason
is, we now excite the electrons on their ’preferred’ frequency; the amplitude of their
oscillation is relatively large, and therefore much energy is dissipated by the damping
mechanism.
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Figure 7.13: (code) (a) Profile of the polarizability |αpol| (blue curve) and of the phase shift

arctan
Imαpol

πReαpol
(red curve). (b) Refractive index (blue curve) and the absorption (red curve).

In the spectral region between ω1 and ω2 we have anomalous dispersion.

The refractive index n plotted in Fig. 7.13 may be below 1 above the resonance,
suggesting that the velocity of the wave exceeds c. But we must remember that
energy propagates at the group velocity, which is always below c. The graph does
not include the contributions of other terms in the sum, because they are negligible
when the resonances are narrow or distant from each other. Out of the resonances,
the damping can be ignored, and the formula for the refractive index simplifies:

n = 1 +
Nq2

2mε0

∑

j

fj
ω2
j − ω2

. (7.144)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_AnomalousDispersion.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_AnomalousDispersion.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_AnomalousDispersion.m
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For most substances the natural frequencies ωj are distributed across the spectrum in
a chaotic way. In transparent materials, the resonances are in the ultraviolet regime,
such that the visible frequencies ω are far below the resonances, ω � ωj . In this case,

1

ω2
j − ω2

' 1

ω2
j

(
1 +

ω2

ω2
j

)
. (7.145)

and (7.144) adopts the form,

n = 1 +
Nq2

2mε0

∑

j

fj
ω2
j

+ ω2 Nq
2

2mε0

∑

j

fj
ω4
j

. (7.146)

Or, in terms of vacuum wavelengths (λ = 2πc/ω):

n = 1 +A

(
1 +

B

λ2

)
. (7.147)

This is the Cauchy formula; the constant A is called the refraction coefficient and B
is called dispersion coefficient. The Cauchy equation applies reasonably well to most
gases in the optical regime. Fig. 7.9 shows the example of the refractive index of air.

The Lorentz model certainly does not account for all dispersion phenomena in
non-conductive media. But at least, it indicates how the damped harmonic motion
of electrons can generate a dispersive refractive index, and it also explains why n is
usually a slowly increasing function of ω with occasional ’anomalous’ regions.

Example 76 (Energy density and Poynting vector in a dielectric medium): The
energy density in vacuum, ū = ε0

4
|~E|2 + 1

4µ0
| ~B|2, becomes in a dielectric medium,

ū(χ) =
1

4
Re (ε~E · ~E∗ +

1

µ0

~B · ~B∗) =
Re ε

4
|~E|2 +

1

4µ0

∣∣∣∣k + ıκ

ω
~E
∣∣∣∣2

=
ε0

4
(1 + χ′e)E2

0 +
ε0

4ω2
|k + ıκ|2E2

0 = (k2 − κ2 + k2 + κ2)
ε0

4
E2

0 =
ε0

2

k2

ω2
E2

0 ,

where we only consider the real part of the susceptibility χε. On the other hand,
the Poynting vector is,

Ī =
1

2µ0
Re [~E × ~B∗] =

ε0c
2

2
E2

0

[
e−2ωκz/cRe

k + ıκ

ω

]
=
ε0c

2

2

k

ω
E2

0 e
−2ωκz/c .

7.2.4.2 The Fresnel-Fizeau effect

Naively, the index of refraction is due to a finite time lag between photon absorption
and emission. The time spend in an excited state slows down the light propagation
velocity. If during this time the atom travels, the atomic velocity adds to (or reduces)
the light propagation velocity. This effect which is known as Fresnel-Fizeau effect is an
internal degrees of freedom effect. Consider a medium with the index of refraction n
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(measured in the moving frame) which is moving with velocity v. The copropagation
velocity of light is for v � c,

cv =
c

nrf

c+ nrfv

c+ v/nrf
≈ c

nrf
+ v

(
1− 1

n2
rf

)
. (7.148)

This is the Fresnel ’drag’ coefficient. In particular, it is easy to show that,

c−v < c/nrf < cv < c . (7.149)

Expressing the refraction index by the susceptibility, nrf =
√

1 + χε ≈ 1 + 1
2χε, we

get,
cv − c−v

2v
= 1− 1

n2
rf

=
χε

1 + χε
. (7.150)

Knowing that,

χε =
2nd2

3ε0~
∆ + ıΓ

4∆2 + 2Ω2 + Γ2
and d =

√
3πε0~Γ
k3

(7.151)

Reχε =
2πΓn

k3

∆

4∆2 + 2Ω2 + Γ2

it follows,
cv − c−v

2v
=

1

1 +
(

2πΓn
k3

∆
4∆2+2Ω2+Γ2

)−1 . (7.152)

For small detunings within the natural linewidth,

cv − c−v
2v

≈ 1

1 + k3

2πn
Γ
∆

, (7.153)

a long excited state lifetime is advantageous. For very large detunings and Ω→ 0,

cv − c−v
2v

≈ 1

1 + 2k3

πn
∆
Γ

. (7.154)

This shows that (far from resonance) the effect increases for large densities, broad
linewidths and smaller detunings. For example, the Rb D1 line for typical conditions

the coefficient is 2k3

πn ≈ 1000 19.

7.2.5 Light interaction with metals and the Drude model

The Drude model is based on a classical kinetic theory of non-interacting electrons in a
metal. Since the conduction electrons are considered to be free, the Drude oscillator is
an extension of the Lorentz model of a single oscillator to the case, when the restoring

19For the high-finesse ring-cavity CARL experiment this means that the Fresnel-Fizeau effect is
negligible. Far from resonance the atoms do not spend time in the excited state. The adiabatic
elimination of the internal degrees of freedom removes the effect from the theoretical model. It
also means that the counter-propagating modes of the ring-cavity do not split because of the atomic
velocity, nrf+ = nrf−. The calculation shows that the back-scattered light is not perfectly resonant,
but that this shift is negligibly small.
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Figure 7.14: (code) Real (red) and imaginary (green) parts of the dielectric function as a

function of the excitation frequency.

force and the atomic resonance frequency are zero, Γ0 = ω0 = 0. The equation of
motion is,

m
dv

dt
+mΓdv = −e~E , (7.155)

where mdv
dt is the force accelerating the electron, mΓdv is the friction due to collisions

with ions of the crystalline lattice and −e~E = −e~E0eıωt is the Coulomb force exerted
by the oscillating field. We find,

v = v0e
ıωt = − e

m

~E0
ıω + Γd

eıωt . (7.156)

The current density corresponding to the motion of n electrons per unit volume is,

jc(ω) = −nev =
ne2

m(Γd + ıω)
~E . (7.157)

In addition we have the current that corresponds to the electric displacement in
vacuum,

jd(ω) =
∂ ~D
∂t

= ıωε0
~E , (7.158)

where ~D = ε0
~E . The total current density is given by,

j(ω) = jc(ω) + jd(ω) =

[
ne2

m(Γd + ıω)
+ ıωε0

]
~E . (7.159)

Assuming the total current as being created by a total electric displacement, ~Dtot =
ε̃~E , where again the electric field and the displacement are related by a complex
permittivity, we find,

j(ω) =
∂ ~Dtot

∂t
= ıωε̃~E , (7.160)

and comparing the last two expressions,

[
ne2

m(Γd + ıω)
+ ıωε0

]
~E = ıωε̃(ω)~E . (7.161)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_DrudeDispersion.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_DrudeDispersion.m


280 CHAPTER 7. ELECTROMAGNETIC WAVES

Resolving by ε̃,

ε̃(ω) = 1− ω2
p

ıωΓd − ω2
, (7.162)

where

ωp ≡
√
ne2

mε0
(7.163)

is called the plasma frequency, which corresponds to the energy, where ε(ωp) ' 0.
Separated into real and imaginary parts,

ε′(ω) = 1− ω2
p

Γ2
d + ω2

, ε′′(ω) =
ω2
pΓd

ω(Γ2
d + ω2)

(7.164)

For ω < ωp and small Γd, the real part ε′ is negative. No electric field can penetrate
the metal, which therefore becomes fully reflecting.
For ω = ωp, the real part ε′ is zero. That is, the electrons oscillate in phase with the
field along the propagation distance in the metal.
For ω � ωp, the imaginary (absorptive) part ε′′ disappears at high frequencies. For
metals, usually we have ωp = (2π) 1000...4000 THz and Γd ≈ 100 s-1.

Note that the Drude model has its limitations. It provides simple pictures for
electric conduction in metals and related phenomena, such as the Hall effect. On the
other hand, it fails when the electronic wave nature or the energetic band structure
of the material, e.g. in semiconductors come into play.
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Figure 7.15: (code) Examples of frequency-dependent permittivities for (a) sapphire [33, ?],

(b) silver [79], and (c) amorphous glas [30].

7.2.6 Causality connecting ~D with ~E and the Kramers-Kronig
relations

A consequence of the dispersion of ε(ω) is the temporarily nonlocal connection be-

tween the displacement ~D and the electric field ~E . Calculating the Fourier transform
of,

~D(r, ω) = ε(ω)~E(r, ω) = ε0[1 + χε(ω)]~E(r, ω) , (7.165)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_Permittivities.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_Permittivities.m
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we obtain, using the convolution theorem,

~D(r, t) =
1√
2π

∫ ∞

−∞
ε(ω)~E(r, ω)e−ıωtdω (7.166)

= ε0
~E(r, t) +

ε0√
2π

∫ ∞

−∞
χε(ω)~E(r, ω)e−ıωtdω

= ε0
~E(r, t) +

ε0√
2π

∫ ∞

−∞
χε(τ)~E(r, t− τ)dτ ,

where χε(τ) is the Fourier transform of the electric susceptibility. This results shows

that the displacement field ~D depends on all values the incident electric field ~E had
at all times. Only if χε(ω) were independent of ω would we have χε(τ) ∝ δ(τ).

Example 77 (Simple model of the susceptibility): To illustrate the impli-
cations of equation (7.166) we consider a permittivity of the following form,

ε(ω)

ε0
=

ωp
ω2

0 − ω2 − ıγω . (7.167)

The kernel related to the susceptibility,

χε(τ) =
ω2
p

2π

∫ ∞
−∞

e−ıωτdτ

ω2
0 − ω2 − ıγω , (7.168)

can be evaluated by contour integration, the result being,

χε(τ) = ω2
pe
−γτ/2 sin τ

√
ω2

0 − (γ/2)2√
ω2

0 − (γ/2)2
Θ(τ) , (7.169)

where Θ(τ) is the Heaviside function.

This example shows that the displacement field ~D only depends on the electric
field at past times, which is fortunate as it allows causality to be respected.

7.2.6.1 The Kramers-Kronig relations

The Kramers-Kronig relations are bidirectional mathematical relations, connecting
the real and imaginary parts of any complex function that is an analytic function on
the upper half-plane 20. These relationships are often used to calculate the real part of
response functions in physical systems from the imaginary part (or vice versa). This
works because, in stable physical systems, causality and analyticity are equivalent
conditions. Be χ(ω) a complex function of the complex variable ω. We assume this
function to be analytic in the upper closed half-plane of ω and to disappear as 1/|ω|
or faster for |ω| → ∞. The Kramers-Kronig relations are given by,

Reχ(ω) =
1

π
P
∫ ∞

−∞

Imχ(ω′)

ω′ − ω dω′ and Imχ(ω) = − 1

π
P
∫ ∞

−∞

Reχ(ω′)

ω′ − ω dω′ ,

(7.170)
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Figure 7.16: Path of the contour integral illustrating Cauchy’s theorem.

where P denotes the Cauchy principal value. Thus, the real and imaginary parts of
such a function are not independent, and the complete function can be reconstructed
from only one of its parts.

For any analytic function χ defined on the upper closed half-plane, the function
ω′ → χ(ω′)/(ω′ − ω) where ω ∈ R, will also be analytic in the upper half-plane. The
Cauchy’s residue theorem for integration consequently says, that

∮
χ(ω′)

ω′ − ωdω
′ = 0 . (7.171)

We chose the contour to follow the real axis, making a loop around the pole at
ω′ = ω, and a large semicircle in the upper half-plane, as shown in Fig. 7.16. We now
decompose the integral into its contributions along each one of these three paths and
then evaluate the limits. The length of the semicircular path increases proportionally
to |ω′|, but the integral along it disappears in this limit, since χ(ω′) disappears at
least as fast as 1/|ω′|. Letting the size of the semicircle go to zero we get,

0 =

∮
χ(ω′)

ω′ − ωdω
′ = P

∫ ∞

−∞

χ(ω′)

ω′ − ωdω
′ − ıπχ(ω) . (7.172)

The second term in the last expression is obtained using the Sokhotski-Plemelj theo-
rem of residues. After rearrangement we arrive at the compact form of the Kramers-
Kronig relations,

χ(ω) =
1

ıπ
P
∫ ∞

−∞

χ(ω′)

ω′ − ωdω
′ . (7.173)

The imaginary unit in the denominator makes the connection between the real and
the imaginary components. Finally, we separate χ(ω) and the equation (7.173) into
their real and imaginary parts, and we get the expressions from above (7.170).

7.2.6.2 Physical interpretation in terms of causality

We can apply the Kramers-Kronig formalism to response functions. In certain linear
and time-invariant physical systems or signal processing applications, the response
function h(t) describes, how some time-dependent property of the system, responds
to a force F (t′) pulsed during a time t′. For example, the property of the system can
be the angle of a pendulum and the force applied by a motor kicking the pendulum.

20A function is analytic if and only if its Taylor series about a point r0 converges to the function
in some neighborhood for every r0 in its domain. Hence, analytic functions must be infinitely
differentiable.
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Figure 7.17: (code) Real (blue) and imaginary (red) parts of the susceptibility. The dashed

curves are calculated by the Kramers-Kronig formulas.

The response function must be zero for t < 0, since the system can not respond to
the force before it has been applied. It can be shown that this request for causal-
ity in time domain implies in frequency domain, that the Fourier transform χ(ω) of
h(t) is analytical inside the upper half-plane. Furthermore, if we subject the system
to an oscillating force with a frequency much higher than its highest resonance fre-
quency, there will be almost no time for the system to respond before the forcing has
alternated the direction, and hence the frequency response χ(ω) converges to zero,
when ω becomes very large. From these physical considerations, we see that χ(ω) will
normally satisfy the conditions necessary for the Kramers-Kronig relations to apply.

The frequency response of a system forced to generate an impulse response h(t)
is given by the Fourier-transform,

χ(ω) = 1√
2π

∫ ∞

−∞
h(t)e−ıωtdt = F [h(t)] , (7.174)

which for an electrical system corresponds to its impedance. Now, the boundary
condition of causality can be implemented with the use of the Heaviside step function
Θ(t),

χ(ω) = 1√
2π

∫ ∞

−∞
h(t)Θ(t)e−ıωtdt = F [h(t)Θ(t)] = F [h(t)Θ(t)Θ(t)] . (7.175)

Note that the implementation of causality via the Heaviside step function is directly
implemented when replacing the Fourier transform by the Laplace transform. Apply-
ing the convolution theorem to the Fourier transform and using the Fourier transform
of the Heaviside function we get 21,

χ(ω) = F [h(t)Θ(t)] ? F [Θ(t)] = χ(ω) ? (FΘ)(ω) = χ(ω) ?
(

1
2πıω + 1

2δ(ω)
)
.

(7.176)
This equality can be considered an early or raw form of the Kramers-Kronig relations
and will turn out to be equivalent to them. To see this, we carry out the convolution
explicitly,

χ(ω) =
1

2π

∫ ∞

−∞

χ(ω′)dω′

ı(ω − ω′) +
1

2
χ(ω) , (7.177)

21F [Θ(t)] = 1
ı
√

2πω
+
√
π
2
δ(ω)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_KramersKronigTest.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_KramersKronigTest.m
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or isolating χ(ω),

χ(ω) =
1

π

∫ ∞

−∞

χ(ω′)dω′

ı(ω − ω′) . (7.178)

This is the frequency response of causal systems being invariant under a Hilbert-
transform. It is equivalent to the Kramers-Kronig relations (7.170). Rewriting it for
only positive integration limits, the integral splits up like,

χ(ω) =
1

π

∫ ∞

0

χ(ω′)dω′

ı(ω − ω′) +
1

π

∫ ∞

0

χ(−ω′)dω′
ı(ω + ω′)

. (7.179)

From the definition of the Fourier integral of the real quantity h(t) follows directly
χ(−ω) = χ∗(ω), that is, the positive frequency response determines the negative
frequency response. Therefore,

χ(ω) =
1

π

∫ ∞

0

χ(ω′)(ω + ω′) + χ∗(ω′)(ω − ω′)
ı(ω2 − ω′2)

dω′ (7.180)

=
1

π

∫ ∞

0

ω′Imχ(ω′)− ıωReχ∗(ω′)

ω2 − ω′2 dω′ .

from which we obtain the Kramers-Kronig relations for the real and imaginary parts
in a format, where they are useful for physically realistic response functions,

Reχ(ω) =
2

π

∫ ∞

0

ω′Imχ(ω′)

ω2 − ω′2 dω′ and Imχ(ω) =
−2

π

∫ ∞

0

ωReχ(ω′)

ω2 − ω′2 dω′ .

(7.181)
The imaginary part of a response function describes, being out of phase with the driv-
ing force, how a system dissipates energy. The Kramers-Kronig relations imply that
observing the dissipative response of a system is sufficient to determine its (reactive)
in-phase response, and vice versa.

7.2.7 Exercises

7.2.7.1 Ex: Skin depth

a. Consider a piece of glass containing some free charges. How long does it take for
the charges to migrate to the surface?
b. Suppose you were designing a microwave experiment at a frequency of 1010 Hz.
How thick would you make a silver coating?
c. Find the wavelength and propagation velocity in copper for radio waves at 1 MHz.
Compare with the corresponding values in air (or vacuum).

7.2.7.2 Ex: Complex refractive index

A light wave described by the electric field Ei = E0eık0z comes from the vacuum and
impinges on a metal surface characterized by the complex refractive index n = n′+ın′′.
Determine from the relation n =

√
ε the relative dielectric constant ε.

a. At what depth the field falls to e−1, if Emet ' 0.05E0 and kmet = nk0.
b. Now despise the penetrating field, |Emet| ' 0, and consider the reflected field
Er = E0e−ıkx+ı∆φ. Calculate the intensity resulting from the superposition of Ei and
Er.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_MeiosCondutores01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_MeiosCondutores02.pdf
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7.2.7.3 Ex: Fourier expansion

The Fourier inversion theorem says that,

f(z) =

∫ ∞

−∞
A(k)eıkzdk ⇐⇒ A(k) = 1

2π

∫ ∞

−∞
f(z)e−ıkzdz .

Use the theorem to determineA(k) for the wavepacket given by f(z, t) =
∫∞
−∞A(k)eı[kz−ω(k)t]dk

as a function of the real parts Re f(z, 0) and Re ḟ(z, 0).

7.2.7.4 Ex: Electromagnetic wave

In a dispersionless medium (ε = ε0 and µ = µ0) we have for a component u(x, t) of
an electromagnetic wave (here without dimension),

u(x, t) =
1√
2π

∞∫

−∞

dkA(k)eıkx−ıω(k)t with ω(k) = ck ,

and

A(k) =
1√
2π

∞∫

−∞

dxu(x, 0)e−ıkx .

a. Show that u(x, t) satisfies the one-dimensional wave equation for vacuum.
b. Calculate the spectral distribution A(k) for u(x, t) = eık0x−ıω0t.
c. Calculate the spectral distribution A(k) for {u(x, t) = eık0x−ıω0t for −L < x −
(ω0/k0)t < L and 0 else}.
d. Calculate u(x, t), when u(x, 0) =

∫ +a

−a δ(x− a)da.
e. Try to understand in an elementary way the relation of part (c) between the band-
width and the length of the wavepacket. Perform the transition to the limit L→∞
explicitly. For the case (d) discuss the propagation of the wavepacket in space.
Formulas:

δ(k0 − k) =
1

2π

∞∫

−∞

dxeı(k0−k)x =
1

π
lim
L→∞

sin(k0 − k)

k0 − k

Θ(a) =
1

2πı

∞∫

−∞

dk
eıka

k
=

{
1 for a > 0

0 else
.

7.2.7.5 Ex: Phase and group velocity

Let us study the one-dimensional motion of a wavepacket in x-direction, which spreads
in infinite space. The law of dispersion is given by ω = ω(k). The motion of a
wavepacket is then described by,

u(x, t) =
1√
2π

∫ ∞

−∞
dkA(k)eıkx−ıω(k)t ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_Dispersao01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_Dispersao02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_Dispersao03.pdf
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where the spectral distribution A(k) is given by shape of the wavepacket at time t = 0:

A(k) =
1√
2π

∫ ∞

−∞
dxu(x, 0)e−ıkx .

The maximum of A(k) be at k = k0. We call vph = ω(k)/k the phase velocity
and vgr = [dω(k)/dk]k0 the group velocity, because in specific idealized situations a
wavepacket propagates precisely at this speed. In the following we consider a propa-
gation of the wavepacket given by,

u(x, 0) = c exp

{
− x2

2a2
+ ık0x

}

for a medium characterized by the dispersion relation ω(k) = b2k2 (for a de Broglie
matter wave).
a. Plot the shape of the wavepacket at time t = 0 via the intensity distribution
|u(x, 0)|2. The ’width’ of a Gaussian profile is given by the points, where the profile
fell to (1/e) of the maximum value. Calculate the width 4x(t = 0) of the intensity
distribution.
b. Calculate the spectral distribution A(k) and the width 4k of the corresponding
intensity distribution |A(k)|2.
c. Now calculate u(x, t) at a later time t. Express u(x, t) in the form

u(x, t) = αe−(x−βt)2/γeı(k0x−ω(k0)t)eıφ, where α, β, γ, and φ are real quantities which,
nevertheless, may depend on t and x.
d. Calculate the intensity distribution |u(x, t)|2 at time t. At what speed does the
maximum move? Calculate the width 4x(t) of the intensity distribution. What is
the temporal evolution of 4x(t)4k?
e. Compare |u(x, t)|2 width |u(x, 0)|2.
Help: ∫ +∞

−∞
dx e−ax

2+bx+c =
√

π
a exp

[
b2+4ac

4a

]
.

7.2.7.6 Ex: Radiation force acting on a small dielectric particle

The polarizability of a small (a� λ) dielectric particle with complex refraction index
np = Renp − ıαλ4π immersed in a medium of refraction index nm is given by,

αrad =
4πa3 n2

p−n
2
m

n2
p+2n2

m
n2
mε0

1− n2
p−n2

m

n2
p+2n2

m

[(
nmω0

c a
)2 − 2

3 ı
(
nmω0

c a
)3] .

Calculate the total force acting on it when subject to an electromagnetic field.

7.2.7.7 Ex: Lorentz model

Based on the Lorentz model, derive the differential equation for the oscillation ampli-
tude of the electrons and calculate the response of the matter reacting via a polariza-
tion P = Nex, where N is the number of electrons and x their oscillation amplitude.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_ModeloLorentz01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_ModeloLorentz02.pdf
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Calculate the absorptive part Imχ and the dispersive part Reχ of the susceptibility
χ ≡ P/ε0E .
With this calculate the index of refraction n and the coefficient of absorption α in the
Lorentz model.

7.2.7.8 Ex: Lorentz force on a single atomic dipole

Calculate the Lorentz force on a single atom within the dipole approximation from
the expression [47],

F =

∫
d3r[%(r)~E(r) + j(r)× ~B(r)] .

7.2.7.9 Ex: The Faraday effect

Derive the Faraday effect from the Lorentz model using the following procedure:
a. Formulate the equation of motion for the position s of a bound electron according
to (7.107) in the presence of a homogeneous magnetic field ~B = Bêz and an elec-

tromagnetic wave characterized by ~E(z, t) = E(z)ε̂e−ıωt and assumed to be initially
linearly polarized in x-direction.
b. Express the motion of the electron in the xy-plane in a new basis given by ê± =
1√
2
(êx ± ıêy).

c. Solve the equations of motion for the decoupled components s±(z, t) ≡ sx ∓ ısy
and determine the susceptibility.
d. Calculate the electric field and the angle by which the linear polarization vector is
rotated as a function of z.

7.2.7.10 Ex: Complex refraction index and extinction coefficient

a. Derive the relations n′2 − n′′2 = 1 + χ′ε and 2n′n′′ = χε. Note: In a transparent
dielectric medium there is no absorption, such that, n′2 = 1 + χ′ε = ε

ε0
.

b. Calculate the absorption coefficient for a light field traversing a dielectric medium.

7.3 Plasmons, waveguides and resonant cavities

7.3.1 Green’s tensor for wave propagation in dielectric media

The electromagnetic field in the presence of macroscopic dielectrics is governed by
an inhomogeneous vector Helmholtz equation. Defining the permittivity and the
permeability as tensor fields ~D(r, ω) = ε(r, ω)ε0

~E(r, ω) and ~B(r, ω) = µ(r, ω)µ0
~H(r, ω)

the Maxwell equations (6.6), become after a temporal Fourier transform,

∇× ~H = −ıωεε0
~E + j (7.182)

∇× ~E = ıωµµ0
~H

∇ · εε0
~E = %

∇ · µµ0
~H = 0 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_ModeloLorentz03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_ModeloLorentz04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_.pdf
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It is easy to see, that the inhomogeneous Helmholtz equation [53, 66, 17],

[
∇× 1

µ(r, ω)
∇×−ω

2

c2
ε(r, ω)

]
~E(r, ω) = ıωµ0j(r, ω) (7.183)

satisfies the above Maxwell equations with ~E(r, ω)→ 0 for r →∞. Using the Green’s
function formalism, the solution to the Helmholtz equation can be given by,

~E(r, ω) = ıωµ0

∫

V

d3r′G(r, r′, ω) · j(r′, ω) , (7.184)

where the Green’s tensor is the solution to

[
∇r ×

1

µ(r, ω)
∇r ×−

ω2

c2
ε(r, ω)

]
G(r, r′, ω) = δ(3)(r− r′)I (7.185)

together with the boundary condition G(r, r′, ω) → 0 for |r − r′| → ∞. The volume
of integration V is a small volume surrounding the point r = r′ in order to avoid the
singularity.

The Green’s tensor represents the electric field radiated at position r by three
orthogonal dipoles located at r′.

7.3.1.1 Bulk medium

Let us now consider the simplest case of a bulk medium, i.e. an infinitely extended,
homogeneous dielectric independent of r, that is, ε(r, ω) = ε(ω) and µ(r, ω) = µ(ω).
In this case, the Helmholtz equation further simplifies to,

[∇r ×∇r ×−k(ω)2]~Eb(r, ω) = ıωµ0j(r, ω) (7.186)

with k(ω)2 = ω2

c2 µ(ω)ε(ω) defined at r. The Green tensor is then the solution to,

∇r ×∇r × Gb(r, r′, ω)− k2Gb(r, r′, ω) = δ(3)(r− r′)I . (7.187)

7.3.1.2 The scalar Helmholtz equation

The bulk medium vector Helmholtz equation (7.187) can be reduced to a scalar
Helmholtz equation. To that end, we take its divergence and find,

∇ · Gb(r, r′, ω) = − 1
k2∇δ(3)(r− r′) . (7.188)

Using this identity and expanding,

∇r×∇r×Gb =




∂2
x −4 ∂x∂y ∂x∂z

∂x∂y ∂2
y −4 ∂y∂z

∂x∂z ∂y∂z ∂2
z −4







Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz


 = (∇⊗∇− I4)Gb ,

(7.189)
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we may write,

[∆ + k2]Gb(r, r′, ω) = ∇∇ · Gb(r, r′, ω)−∇×∇× Gb(r, r′, ω) + k2Gb(r, r′, ω)

= ∇∇ · Gb(r, r′, ω)− δ(3)(r− r′)I

= − 1
k2∇∇δ(3)(r− r′)− δ(3)(r− r′)I = −

[
I+ 1

k2∇∇
]
δ(3)(r− r′) . (7.190)

The vector Helmholtz equation can hence be solved by writing,

Gb(r, r′, ω) =
[
I+ 1

k2∇∇
]
g(r, r′, ω) , (7.191)

where the scalar Green function g obeys the scalar Helmholtz equation,

[4+ k2]g(r, r′, ω) = −δ(3)(r− r′) , (7.192)

the solution of which is simply,

g(r, r′, ω) =
eık|r−r

′|

4π|r− r′| , (7.193)

where the boundary condition at infinity implies that k must have a positive imaginary
part, k =

√
ε(ω)ωc with Im k > 0. Combining these results, we obtain the Green

tensor of a bulk medium [71, 17],

Gb(r, r′, ω) =
[
I+ 1

k2∇∇
] eık|r−r

′|

4π|r− r′| (7.194)

=
δ(3)(R)I

3k2
− eıkR

4πk2R3

{
[1− ıkR− (kR)2]I− [3− 3ıkR− (kR)2]êR ⊗ êR

}
,

with R ≡ r − r′, as will be shown in Exc. 7.3.7.1. The real and imaginary part are
(for R 6= 0),

4π
k ReGb(r, r′, ω0) = (I− êR ⊗ êR)

cos kR

kR
− (I− 3êR ⊗ êR)

(
sin kR

k2R2
− cos kR

k3R3

)

4π
k ImGb(r, r′, ω0) = (I− êR ⊗ êR)

sin kR

kR
+ (I− 3êR ⊗ êR)

(
cos kR

k2R2
− sin kR

k3R3

)
.

(7.195)

Furthermore is is possible to show [17],

ReGb(r, r, ω) = 0 and ImGb(r, r, ω) =
k

6π
I . (7.196)

Example 78 (Electric field of a point dipole in an inhomogeneous dielec-
tric): Parametrizing the current generated by a point dipole located at r = rs
by

j(r, ω) = −ıωdsδ(3)(r− rs) , (7.197)

the generated electric field in an environment characterized by the Green func-
tion G(r, rs, ω) can be evaluated from Eq. (7.184),

~E(r, rs, ω) = ω2µ0G(r, rs) · ds . (7.198)
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Using the solution (7.194) for bulk media we find,

~Eb(r, rs, ω) = ω2µ0

[
− eıkR

4πk2R3

{
[1− ıkR− (kR)2]I− [3− 3ıkR− (kR)2]êR ⊗ êR

}]
·ds .

(7.199)

with k = k(ω).

7.3.1.3 Bulk medium Green tensor projected on particular orientations

The Green tensor can be used to relate two dipoles êd and ê′d respectively located at
r and r′. Using the identity,

R2ê′∗d (êR ⊗ êR)êd =
(
d′x d′y d′z

)



x2 xy xz

xy y2 yz

xz yz z2







dx

dy

dz


 = R2(ê′d · êR)(êd · êR) ,

(7.200)
we calculate from (7.195),
4π
k
ê′∗d ReGb(r, r′, ω) êd (7.201)

= [ê′d · êd − (ê′d · êR)(êR · êd)]
cos kR

kR
− [ê′d · êd − 3(ê′d · êR)(êR · êd)]

(
sin kR

k2R2
− cos kR

k3R3

)
4π
k
ê′∗d ImGb(r, r′, ω) êd

= [ê′d · êd − (ê′d · êR)(êR · êd)]
sin kR

kR
+ [ê′d · êd − 3(ê′d · êR)(êR · êd)]

(
cos kR

k2R2
− sin kR

k3R3

)
.

Note that dipole moment is complex in the case of circular polarization. The formula
(7.201) simplifies when the dipoles are parallel,

4π
k
ê∗d ReGb(r, r′, ω) êd = [1− (êd · êR)2]

cos kR

kR
− [1− 3(êd · êR)2]

(
sin kR

k2R2
+

cos kR

k3R3

)
4π
k
ê∗d ImGb(r, r′, ω) êd = [1− (êd · êR)2]

sin kR

kR
+ [1− 3(êd · êR)2]

(
cos kR

k2R2
− sin kR

k3R3

)
.

(7.202)

Example 79 (Interaction between induced dipoles at small distances): At
small distances, kR � 1, so that sin kR ' kR and cos kR ' 1, and the expres-
sions (7.202) simplify to,

lim
kR→0

4π

k
ê∗dReGb(r, r′, ω)êd '

−1 + 3(êd · êR)2

k3R3
(7.203)

lim
kR→0

4π

k
ê∗dImGb(r, r′, ω)êd ' 1− (êd · êR)2 .

This result plays a role in the context of collisions between ground and excited
atoms, which can be treated as interactions between induced dipoles,

lim
kR→0

ê∗dReGb(r, r′, ω)êd →
1

4πk2R3

−1 for êd · êR = 0

2 for êd = êR
(7.204)

lim
kR→0

ê∗dImGb(r, r′, ω)êd →

1 for êd · êR = 0

0 for êd = êR
.
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Figure 7.18: (code) Real and imaginary part of the bulk Green tensor for various orientations

of the dipoles: ê′∗d = êx and êd as indicated in the legend.

7.3.1.4 Dispersion relation in anisotropic media

A homogeneous medium can still be anisotropic if,

ε(r, ω) = ε(ω) although ε(ω) · êr 6= const . (7.205)

Then, ε(ω) and µ(ω) still need to be represented by tensors, which however do not
depend on coordinates. The Helmholtz equation then simplifies to,

[
∇r ×∇r ×−

ω2

c2
µ(ω)ε(ω)

]
~Eb(r, ω) = ıωµ0j(r, ω) , (7.206)

in analogy to (7.186). Assuming no currents, j(r, ω) = 0, and plane electromagnetic

waves, ~Eb(r, ω) = ~E0(ω)eık·(r−r
′), we obtain with the identity (7.189),

0 =

[
∇r ⊗∇r − I4−

ω2

c2
µε

]
~E0eık·(r−r

′) (7.207)

=

[
−k⊗ k + k2 − ω2

c2
µε

]
~E0eık·(r−r

′) ,

where µε is to be understood as a product between two matrices. From this we derive
the dispersion relation,

0 =

∣∣∣∣−kikj + k2δij −
ω2

c2
(µ)il(ε)lj

∣∣∣∣ , (7.208)

for i, j = x, y, z.

We will discuss anisotropic homogeneous media in the context of hyperbolic meta-
materials in Sec. 7.3.3.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_BulkGreenTensor.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_BulkGreenTensor.m
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7.3.1.5 Interaction between dipoles near dielectric media

The vector Green tensor describes the interaction between two points in space via an
electromagnetic field. It can be used to solve a variety of problems, for example,

� the interaction between dipoles in free space;

� the modification of a dipole due to the presence of a dielectric boundary (Purcell
effect);

� the modification of the interaction between dipoles due to the presence of a
dielectric boundary.

The linearity of Maxwell’s equations allows us to exploit the superposition prin-
ciple applying it to the Green tensor. For example, we can express the interaction
between two point dipoles r1 and r2 near a dielectric boundary by simply adding to
the bulk tensor for their interaction in free space Gb(r1, r2, ω) a tensor Gd(r1, r2, ω)
accounting for the presence of the dielectric,

G = Gb + Gd . (7.209)

7.3.2 Plasmons at metal-dielectric interfaces

A surface plasmon polariton (SPP) or simply plasmon is an electromagnetic wave in
the infrared or visible spectral regime, which propagates along a metal-dielectric or
metal-air interface. The term SPP explains that the wave involves both, the motion
of charges in the metal and electromagnetic waves in the air or the dielectric.

SPPs are a type surface waves, guided along the interface in a similar way as
light can be guided by an optical fiber. The wavelengths of SPPs are shorter than
that of the incident light, which created them. Thus, they can be more localized and
more intense. Perpendicularly to the interface, they are confined to the scale of a
wavelength. The propagation of SPPs along the interface is limited by absorption
losses in the metal or by photon scattering into other directions, e.g. into free space.

SPPs can be excited by electronic or photonic bombardment. For a photon to ex-
cite an SPP, both must have the same frequency and the same momentum. However,
at a given frequency, a free space photon has less momentum than an SPP because
the two have different dispersion relations (see below). Therefore, a photon coming
from free space can not directly couple to an SPP. For the same reason, an SPP
(on a perfectly smooth metal surface) can not emit photons into free space (assumed
uniform). This incompatibility is analogous to the absence of transmission at total
internal reflection.

However, the coupling of photons to SPPs can be achieved using a coupling
medium, such as a dielectric or a grating, designed to match the wavevectors of
photons and SPPs, until their momenta coincide. For example, a glass prism may
be positioned against a thin metal film in Kretschmann configuration, as shown in
Fig. 7.19(a). Single insulated surface defects, such as isolated or periodic grooves, slits
or elevations, provide a mechanism coupling free space radiation and SPPs, which then
can exchange energy.
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Figure 7.19: (code) (a) Kretschmann configuration of attenuated total reflection for
the coupling of surface plasmons. The component of the scattered wavevector parallel
to the surface forms SPPs, which then propagate along the metal-dielectric interface.
(b) Dispersion curve for a SPP (blue). At low kx it approaches the photonic dispersion
curve (red).

7.3.2.1 Fields and plasmonic dispersion relation

The properties of a SPP can be derived from Maxwell’s equations. Let z > 0 be the
space occupied by the dielectric and z < 0 the space occupied by the metal. The
electric and magnetic fields must obey Maxwell’s equations and, in particular, the
boundary conditions (7.42)(i-iv) at the interface. We will show in Exc. 7.3.7.2, that
the fields must have the following form:

~Hn(r, t) =




0

1

0


H0e

ıkxx+ıkz,n|z|−ıωt , ~En(r, t) =




±kz,n

0

−kx



H0

ωεn
eıkxx+ıkz,n|z|−ıωt ,

(7.210)
under the condition that,

kz,m
εm

= −kz,d
εd

, (7.211)

where n indicates the material (n = m for the metal and n = d for the dielectric).
This condition guarantees the continuity of the electric field parallel to the boundary.
Upper signs apply to the dielectric region (z > 0) and lower signs to the metallic
region (z < 0). That is, SPPs are always transverse magnetic waves (TM). The
wavevector k is complex. In case of a lossless SPP, the kx component is real and the
kz component imaginary,

kz,m = ıκz,m , (7.212)

such that the wave propagates along the x-direction and decays exponentially toward
±z. While kx is always the same in both materials, kz,m is generally different from
kz,d. Entering the fields (7.210) in the wave equation,

∇2 ~Hn = εnµn
∂2 ~Hn
∂t2

, (7.213)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_PlasmonDispersion.m
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we easily verify that,

k2
x + k2

z,n = ω2εnµn = εn

(ω
c

)2

, (7.214)

where we assume µn = µ0 and εn = ε0εn, where the ’breve’ denotes relative permit-
tivities. Solving the two equations (7.214) for n = m,d together with the relationship
(7.211), we obtain the dispersion relation for a plasmon wave propagating on the
surface,

kx =
ω

c

√
εdεm
εd + εm

. (7.215)

To apply this relation in practice, we must specify the two permittivities εn. For
simplicity, we assume εd = 1, and for εm we resort to the Drude model using (7.162),
where for now we despise the attenuation Γd = 0,

εm(ω) = 1− ω2
p

ω2
, (7.216)

where ωp is the plasma frequency (7.163). Joining the expressions (7.215) and (7.216)
we obtain,

ckx =

√
ω2 − ω2

p

2ω2 − ω2
p

. (7.217)

This relationship is plotted in Fig. 7.19(b).
At low kx, the SPP behaves like a photon, but as kx increases, the dispersion

relation becomes flatter and reaches an asymptotic limit ωsp called ’surface plasma
frequency’. If ω < ωsp, the SPP has a shorter wavelength than the radiation in the free
space, such that the components kz,m are purely imaginary and exhibit evanescent
decay. The plasma frequency at the surface (εd = 1) is,

ωsp = lim
kx→∞

ω =
ωp√

2
. (7.218)

7.3.2.2 Absorption of plasmons

The formula (7.216) predicts εm < 0 below the plasmon frequency. Electromagnetic
waves propagating in metals suffer damping due to ohmic losses and interactions
between the electrons and the atoms of the metallic lattice. These effects appear as
an imaginary component of the dielectric function. To take this into account, we
express the dielectric function of a metal in the complex plane,

εm = ε′m + ıε′′m . (7.219)

Generally, we have, |ε′m| � ε′′m, such that the wavevector can be expressed in terms
of its real and imaginary components as (see Exc. 7.3.7.3),

kx = k′x + ık′′x =
ω

c

√
εdε′m
εd + ε′m

+ ı
ω

c

√
εdε′m
εd + ε′m

3

ε′′m
2(ε′m)2

. (7.220)

The wavevector gives us insight into the physically significant properties of the
electromagnetic wave, such as its spatial extent and mode matching conditions.
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7.3.2.3 Distance of propagation and depth of penetration

As an SPP propagates along the surface, it loses energy to the metal due to absorp-
tion. The intensity of the surface plasmon decays with the square of the electric field,
therefore, over a distance x, the intensity decreases by a factor of e−2kxx. The prop-
agation length is defined as the distance, where the SPP intensity has decreased by a
factor of 1/e. This condition is satisfied at a length L = 1

2k′′x
.

Likewise, the electric field decays perpendicular to the surface of the metal. At
low frequencies, the penetration depth of the SPP into the metal is commonly approx-
imated using the skin depth formula. In a dielectric, the field will decay much more
slowly. The decay depth in the metal and the dielectric medium can be expressed as

zn =
λ

2π

( |ε′m|+ εd
ε2n

)1/2

, (7.221)

where n indicates the propagation medium. SPPs are very sensitive to small pertur-
bations within the skin depth and, therefore, are often used to probe surface inhomo-
geneities. Resolve the Exc. 7.3.7.4.

7.3.3 Negative refraction and metamaterials

The general dispersion relation for anisotropic media has been derived in (7.203),

∣∣∣ω2

c2 εilµlj − k2δij + kikj

∣∣∣ = 0 , (7.222)

which, for isotropic media simplifies to ω2

c2 n
2 = k2, where n2 = εµ. Apparently,

inverting the signs of both, the permittivity and the permeability, ε, µ < 0 has no
effect on the equations. However, one can show [97], that inserting into the first and
second Maxwell equations,

∇× ~H = ∂t ~D , ∇× ~E = −∂t ~B (7.223)

with ~D = ε~E , ~B = µ ~H

a plane wave, ~E , ~D, ~B, ~H ∝ eı(k·r−ωt),

k× ~H0 = −ωε~E0 , k× ~E0 = ωµ ~H0 , (7.224)

one obtains for ε, µ > 0, a right-handed triplet of vectors k, ~E , ~H, whereas for ε, µ < 0
one obtains a left-handed triplet. Defining the handedness via,

p ≡ (k× ~E) · ~H
|(k× ~E) · ~H|

, (7.225)

if p = ±1, we call the material is right(left)-handed. The energy flux,

~S = ~E × ~H (7.226)

is parallel to k for right-handed materials and anti-parallel for left-handed, which
means that phase and group velocities are reversed. Also, in left-handed materials we
expect a reversed Doppler effect.
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At the interface between two materials with different handednesses, ε1, µ1 > 0 and
ε2, µ2 < 0, the equations (7.42) must still hold,

(i) ~H‖1 = ~H‖2
(ii) ~E‖1 = ~E‖2
(iii) ε1

~E⊥1 = ε2
~E⊥2

(iv) µ1
~H⊥1 = µ2

~H⊥2

. (7.227)

but now, the signs of E⊥2 and H⊥2 are inverted. We calculate,

~E0 × ~H0 =
1

ωµ
~E0 × (k× ~E0) =

1

ωµ
[k(~E0 · ~E0)− ~E0(k · ~E0)] =

E2
0

ωµ
k � − ~S . (7.228)

As a consequence Snell’s law (7.57) must be corrected,

sin θt

sin θi
=
n1

n2
=
p2

p1

∣∣∣∣
√
ε2µ2

ε1µ1

∣∣∣∣ . (7.229)

The complex refractive index,

n = n′ + ın′′ = c
√
εµ = c

√
(ε′ + ıε′′)(µ′ + ıµ′′) = c

√
|εµ|eıφ/2 (7.230)

can have negative real part, Ren < 0, if the angle is φ > π, that is, if,

sinφ =
Im εµ

|εµ| =
ε′′µ′ + ε′µ′′

|εµ| < 0 . (7.231)

Since the absorption is necessarily ε′′, µ′′ > 0, the condition (7.231) is satisfied if
ε′, µ′ < 0. More generally, a sufficient but not necessary condition for negative refrac-
tion is,

ε′|µ′ + ıµ′′|+ µ′|ε′ + ıε′′| < 0 . (7.232)

The direction of the phase velocity is k, while the energy flows along ~S = ~E × ~H.
For n′ > 0 the dispersive medium is called right-handed, because k, ~E and ~H form a
tripod. For n′ < 0 the medium is called left-handed, because −k, ~E and ~H form a
tripod, that is, k and ~S are contrary. We will check this in Exc. 7.3.7.5. Such media
are always very dispersive.

Left-handed media have attracted much attention, because of the theoretical pos-
sibility of performing perfect lenses with a focusing power not being limited by diffrac-
tion. Left-handed media are studied in non-homogeneous and non-isotropic metama-
terials 22, but there are also ideas on how to design them in homogeneous and isotropic
atomic gases 23

22See [72, 73, 87, 60, 61, 63, 62, 74, 7, 95, 24, 18, 59, 86, 54].
23See the script Quantum Mechanics of the same author .



7.3. PLASMONS, WAVEGUIDES AND RESONANT CAVITIES 297

Figure 7.20: Refraction at the interface between ’right-handed’ and ’left-handed’ media.

7.3.3.1 Hyperbolic metamaterials

Hyperbolic metamaterials (HMM) are artificial media with sub-optical-wavelength
nano-structuring, which exhibit unusual optical properties. In particular, they are
characterized by extreme anisotropy, behaving like dielectrics when illuminated from
one side and like metals when illuminated from another. As already mentioned in
Sec. 7.3.1, in a hyperbolic metamaterial the dispersion relation is anisotropic, corre-
sponding to permittivity and permeability tensors of the form,

ε =




ε⊥

ε⊥

εq


 and µ =




µ⊥

µ⊥

µq


 . (7.233)

In the case ε⊥εq < 0 or µ⊥µq < 0 the dispersion relation,

k2
x + k2

y

εq
+
k2
z

ε⊥
=

(ω/c)2

ε0
, (7.234)

becomes hyperbolic 24. In Exc. 7.3.7.7 we derive from the Maxwell equations, allowing
for an anisotropic (but homogeneous) permittivity tensor, the hyperbolic dispersion
relation.

Example 80 (Interest of hyperbolic metamaterials): Hyperbolic metama-

terials are investigated for their potential interest in engineering the decay routes

of quantum emitters by manipulating the local density-of-states. The reason is,

that HMMs allow for the propagation of modes with wavevectors (known as

high-k modes) much higher than the free-space wavevector. Thus, the evanes-

cent waves (also with high-k) of an emitter couple more easily to a sufficiently

close HMM, and thus emitting their photons faster.

The elementary cells of a metamaterial are often complicated, and a stratification

is helpful to describe its response to incident light. For example, many features

of an HMM can be grasped by frequency-dependent effective permittivity and

permeability tensors.

24Note that a more correct treatment would need to account for the polarizations of the electric
and magnetic fields. We leave this to an upcoming version of the script.
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Figure 7.21: Isofrequency surfaces of hyperbolic dispersion relations. (a) Isotropic dielectric
(ε⊥ = εq); (b) two-sheeted hyperboloid (ε⊥ < 0 and εq > 0); (c) one-sheeted hyperboloid
(ε⊥ > 0 and εq < 0). (d-f) Projection of the two-dimensional isofrequency surfaces shown in
(a-c) on the ky = 0 plane. The yellow-shaded areas correspond to lossy regions (real parts).

In Exc. 7.3.7.8 we show, that the effective permittivity of a nanostructure having
the shape of a stack of alternating intrinsically homogeneous layers with permittivities
εd and εm and thicknesses dd, dm � λ [see Fig. 7.22(b)] is given by [82],

εq =
εddd + εmdm

dd + dm
and

1

ε⊥
=
dd/εd + dm/εm

dd + dm
. (7.235)

Figure 7.22: Hyperbolic dispersion materials. In order to achieve a negative permittivity in
a given direction, the electrons must move freely along it, like in a metal.

Example 81 (Anisotropy of a metamaterial): For example, choosing dm =

dd, εd = 1 and εm = −2, we obtain εq = 1
4

and ε⊥ = − 1
2
.

In Exc. 7.3.7.9 we discuss, whether it is possible to realize a hyperbolic dispersion
relation in an atomic gas.
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7.3.4 Wave guides

The presence of conductive interfaces influences the propagation of electromagnetic
waves. Interfaces, which influence the propagation direction of electromagnetic waves
are called waveguides. Let us consider a waveguide such as the one illustrated in
Figs. 7.23. In the volume enclosed by the waveguide, supposedly perfectly conductive
(~E = 0 = ~B inside the wave guide material), every electromagnetic field must satisfy
the boundary conditions (7.42), that is, we have,

~E‖ = 0 and ~B⊥ = 0 (7.236)

on all interior surfaces of the waveguide. Free surface charges and currents will auto-
matically be generated in such a way as to endorse these conditions, and all conclusions
derived in the following sections are basically corollaries of these boundary conditions.

Figure 7.23: Waveguides of arbitrarily (i) and rectangular (ii) shape.

Let us now consider monochromatic waves propagating along a tube oriented in
z-direction,

~E(x, y, z, t) = ~E(x, y)eı(kzz−ωt) and ~B(x, y, z, t) = ~B(x, y)eı(kzz−ωt) . (7.237)

Obviously, the ~E and ~B fields must simultaneously satisfy the vacuum Maxwell equa-
tions (6.6) inside the guide and the boundary conditions (7.236). To implement these
conditions, we reformulate Maxwell’s equations. We insert (7.237) and the expan-

sions ~E(x, y) =
∑
k=x,y,z Ek(x, y)êk and ~B(x, y) =

∑
k=x,y,z Bk(x, y)êk in the Maxwell

equations (6.6)(i) and (ii) and obtain,

(i) ∂yEz − ıkzEy = ıωBx (ii) ∂yBz − ıkzBy = −ı ωc2 Ex
(iii) ıkzEx − ∂xEz = ıωBy (iv) ıkzBx − ∂xBz = −ı ωc2 Ey
(v) ∂xEy − ∂yEx = ıωBz (vi) ∂xBy − ∂yBx = −ı ωc2 Ez .

(7.238)
Inserting the component By of the third into the second equation, the Bx of the first
into the fourth equation, the Ey of the fourth into the first equation, and the Ex of
the second in the third equation, we arrive at,

(i) Ex = ı
(ω/c)2−k2z

(kz∂xEz + ω∂yBz)
(ii) Ey = ı

(ω/c)2−k2z
(kz∂yEz − ω∂xBz)

(iii) Bx = ı
(ω/c)2−k2z

(kz∂xBz − ω
c2 ∂yEz)

(iv) By = ı
(ω/c)2−k2z

(kz∂yBz + ω
c2 ∂xEz) .

(7.239)
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And inserting these equations into Maxwell’s equations (iii) and (iv), we arrive at,

[
∂2

∂x2
+

∂2

∂y2
+ (ω/c)2 − k2

z

]
Ez = 0 =

[
∂2

∂x2
+

∂2

∂y2
+ (ω/c)2 − k2

z

]
Bz . (7.240)

Hence, we can solve the waveguide problem by first solving the wave equations for
the components Ez and Bz and then inserting the solutions into Eqs. (7.239) in order
to obtain the other field components.

When Ez = 0 we call these waves transverse electric waves (TE), when Bz =
0 we call them transverse magnetic waves (TM), and when Ez = 0 = Bz we call
them transverse electro-magnetic waves (TEM). TEM waves can not exist in a hollow
waveguide, as we will show in Exc. 7.3.7.10.

7.3.4.1 Waveguide with constant rectangular cross section

Here, we consider the transmission of TE waves through a waveguide of constant
rectangular cross-section, as shown in Fig. 7.23(ii). Similarly to the procedure for
solving the Laplace equation in electrostatics, we make a separation ansatz for the
variables in a way suggested by the symmetry of the problem, that is, we assume the
existence of two functions X and Y , such that inserting the ansatz

Ez = 0 and Bz = X(x)Y (y) , (7.241)

in the wave equation,

Y
d2X

dx2
+X

d2Y

dy2
+ [(ω/c)2 − k2

z ] = 0 , (7.242)

leaves us with,

1

X

d2X

dx2
= −k2

x and
1

Y

d2Y

dy2
= −k2

y with −k2
x−k2

y+(ω/c)2−k2
z = 0 . (7.243)

Bx must vanish on the surfaces at x = 0, a and, because of (7.239)(iii) ∂xBz as well,
such that dX/dx = 0, that is, X is a cosine. In the same way, By must vanish on the
surfaces at y = 0, b, such that Y is a cosine. Therefore, the solution is,

Bz = B0 cos kxx cos kyy with kx = mπ
a and ky = nπ

b . (7.244)

With this, the wavevector becomes,

kz =
√

(ω/c)2 − π2[(m/a)2 + (n/b)2] . (7.245)

Consequently, the frequency must be higher than,

ω > cπ
√

(m/a)2 + (n/b)2 ≡ ωmn , (7.246)
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to avoid exponentially attenuated fields. The frequency ωmn is called cut-off fre-
quency. The components Bx and By can be determined from (7.239)(iii) and (iv),

~E = E0




ıωky
k2x+k2y

cos kxx sin kyy

−ıωkx
k2x+k2y

sin kxx cos kyy

0


 eı(kzz−ωt)

~B = B0




ıkzkx
k2x+k2y

sin kxx cos kyy

ıkzky
k2x+k2y

cos kxx sin kyy

cos kxx cos kyy


 eı(kzz−ωt)

. (7.247)

Inserting ωmn in the dispersion relation (7.245), we notice that the formula for
the phase propagation velocity,

c =
ω

kz
=

c√
1− (ωmn/ω)2

> c , (7.248)

predicts a velocity above the speed of light. However, the group velocity,

vg =
1

dkz/dω
= c
√

1− (ωmn/ω)2 < c , (7.249)

is slower. Resolve Exc. 7.3.7.11 and 7.3.7.12 25.

7.3.5 The coaxial line

We have already mentioned the possibility of TEM waves in a coaxial waveguide, as
shown in Fig. 7.24. Inserting Ez = 0 = Bz in the equations (7.238) we obtain,

cBy = Ex and cBx = −Ey
∂xEy − ∂yEx = 0 = ∂xBy − ∂yBx
∂xEx + ∂yEy = 0 = ∂xBx + ∂yBy

, (7.250)

where we join the Maxwell equations (iii) and (iv) in the last line. In Exc. 7.3.7.13
we will show that,

~E(ρ, φ, z, t) =
A cos(kzz − ωt)

ρ
êρ and ~B(ρ, φ, z, t) =

A cos(kzz − ωt)
cρ

êφ , (7.251)

satisfies Maxwell’s equations. Solve Exc. 7.3.7.14.

25Rectangular waveguides are used, for example, in radio detection and ranging (RADAR) systems
to guide microwave signals from a synthesizer to an antenna.
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a

b

Figure 7.24: Guia de onda coaxial.

7.3.6 Cavities

An optical resonator consists of an arrangement of mirrors reflecting light beams
in such a way as to form a closed path. Light which entered the cavity carries out
many round-trips before it is transmitted again through a (partially reflecting) mirror,
scattered out of the cavity mode or absorbed by impurities in the mirrors. Thus, the
light power is considerably increased. That is, cavities can store light. Do Exc. 7.3.7.15
to 7.3.7.17.

In order to resonate in a cavity, a light beam must satisfy the boundary condition,
that the mirror surfaces coincide with nodes of the standing light wave formed by the
beam and its reflections at the mirrors. Therefore, in a cavity of length L, only a
discrete spectrum of wavelengths Nλ/2 = L can be resonantly amplified, where N is
a natural number. Because of this property, cavities are often used as frequency filters
or optical spectrum analyzers: Only frequencies close to ν = Nδfsr are transmitted,
where δfsr = c/2L is the called the free spectral range of the cavity.

A cavity is characterized on one hand by its geometry, that is, the curvature and
the distance of its mirrors, and on the other hand by its finesse, which is given by the
reflectivity of its mirrors. Let us first study the finesse and postpone the discussion
of its geometry to Sec. 7.4.1. Treating the cavity as a multiple path interferometer
(or Fabry-Perot cavity), we can derive an expression for the reflected and transmitted
intensity as a function of frequency,

(k + ∆k)L =
(ωc + ∆)L

c
=
ωc + ∆

2δfsr
= πN +

∆

2δfsr .
(7.252)

Figure 7.25: Multiple interference in an optical cavity of two mirrors characterized by re-
flectivities r1,2.
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The so-called Airy formulas for reflection and transmission are,

Irefl = Iin
(2F/π)2 sin2(∆/2δfsr)

1 + (2F/π)2 sin2(∆/2δfsr)

Itrns = Iin
1

1 + (2F/π)2 sin2(∆/2δfsr)

, (7.253)

where R = |r|2 is the reflectivity of a mirror and ∆ the detuning between the laser and
the cavity (in radians/s). We will derive the formulas in Exc. 7.3.7.18 and 7.3.7.19.
The transmission curve of the cavity has a finite bandwidth κint, which depends on
the reflectivity of the mirrors. The finesse of the cavity is defined by,

F ≡ 2πδfsr
κint

=
π
√
R

1−R . (7.254)

Note that δfsr is given in terms of a real frequency, while κint is a radiant 26.
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Figure 7.26: (code) Transmission and reflection of a resonator. The chosen mirror reflectiv-

ities are R = 70%, the absorption losses S = 1%. The red dash-dotted line is the Lorentzian

approximation. Apparently, it fails off resonance.

The Airy formula was derived under the assumption of plane waves, but this as-
sumption is not always realistic. Indeed, as we will show in Sec. 7.4.1, light propagates
in transversely delimited modes and is subject to diffraction. We will see, that the res-
onance of a cavity not only depends on the order number N of the longitudinal mode,
but also on the order of the transverse mode. The free space modes are TEM-modes.

7.3.6.1 Damping of the cavity

The decay time τ of the cavity is defined by the number of ’round-trips’ with reflections
at both mirrors R1 and R2, that a light beam can do before its intensity falls to e−1

of its original value [102](p.148):

I(τ) = I0
√
R1R2

cτ/2L !
= e−1I0 . (7.255)

26Note, that κint is defined as the FWHM of the intensity transmission curve.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_AiryFormel.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_AiryFormel.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_AiryFormel.m
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Letting R1 = R2 = 1− T , this yields,

τ =
2L

c

ln e−1

lnR1R2
=

1

δfsr

−1

ln(1− T )2
' 1

δfsr

1

2T
(7.256)

=
1

2δfsr

1

1−√R1R2

' F

2πδfsr
=

1

κint
,

approximating
√
R ' 1. Hence, κint has also the meaning of a intensity decay

constant 27.

Example 82 (Use of transfer matrices in cavities): The transfer matrix
formalism can be used for impedance matching the reflection of optical cavities 28.
In order to deserve the label mode, a geometric configuration of a cavity must
be self-consistent, that is, any field E±(z) wanting to fill the mode must be the
same after a round-trip around the cavity.
We proceed to calculating the real and imaginary parts of the transfer matrices,E+

z + E−z
E+
z − E−z

 =M

E+
0 + E−0
E+

0 − E
−
0

 .

For example, the phase shift due to free space propagation is described by the
matrix,

Mphase =

 cos kz ı sin kz

ı sin kz cos kz

 .

Reflection and transmission from a classical object with can be written as, ~E+
z =

taE+
0 + ra~E−z and E−0 = ta~E−z − raE+

0 , where r2
a + t2a = 1. Transforming to the

basis E+
j ± E

−
j , we obtain,

Mpump =

 1+ra
ta

0

0 1−ra
ta

 .

Let us assume that the cavity is pumped from one side by the field Ein. We get
after a round-trip,E+ + E−

E+ − E−

 =M

E+ + E−

E+ − E−

+tin

E+
in + E−in
E+

in − E
−
in

 = tin(1−M)−1

E+
in + E−in
E+

in − E
−
in

 .

The phase minimum of the determinant det(1−M) determines the eigenvalues
of the cavity. For a round-trip with losses in the mirrors the determinant is
det(1−MphaseMloss) = 2− (tc + t−1

c ) cosφ, where tc is the total transmission
coefficient of the cavity. Phase minima always occur when φ = 2πn. The
amplification of the intensity at theses phases is given by,

Icav

Iin
=
|E+ + E−|2

|E+
in + E−in |2

=
t2in

(1− tc)2
.

Do the Exc. 7.3.7.20.

27It should not be confused with the electric field amplitude decay rate defined as κ = κint/2.
28Not to be confused with phase matching of optical cavities, which is an important requirement

for coupling light efficiently into a cavity, but must be treated within the theory of Gaussian optics.
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7.3.7 Exercises

7.3.7.1 Ex: Green function for vector Helmholtz equation

Derive the expression (7.194) in Cartesian coordinates.

7.3.7.2 Ex: The fields of a plasmon

From the ansatz,

~Hn(r, t) =




0

Hy,n
0


 eıkxx+ıkz,n|z|−ıωt

for a plasmonic wave, with n = m in the metallic region (z < 0) and n = d in the
dielectric region (z > 0), construct the electric and magnetic fields on both sides of a
metal-dielectric interface.

7.3.7.3 Ex: Absorption of plasmons

Derive the expression (7.220).

7.3.7.4 Ex: Poynting vector of plasmons

At the interface between the vacuum and a metal surface there live solutions of the
Maxwell equations, which decay exponentially in z-direction. We consider in this
exercise only those parts of the waves, which live on the vacuum side z > 0, as
illustrated in Fig. 7.19(a). The magnetic field, in this scheme, takes the following
form:

~H(r, t) =




0

H0

0


 cos(kx− ωt)e−κz (z > 0) .

a. Derive with the help of Maxwell’s equation ∇ × ~H − ∂ ~D
∂t = j the corresponding

electric field ~E(r, t) in the half-space z > 0.

b. Calculate the Poynting vector ~S(r, t) in the half-space z > 0.
c. Calculate the total energy flow in x-direction. To do this, calculate the average
over an oscillation period and integrate over the half-space z > 0.

7.3.7.5 Ex: Negative refraction

Show that a medium with negative refractive index is left-handed and allows for
perfect focusing.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_PlasmonField00.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_PlasmonField01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_PlasmonField02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_PlasmonField03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_HyperbolicRefraction11.pdf
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7.3.7.6 Ex: Negative refraction in chiral media

In a chiral medium the electric polarization ~P couples to the magnetic field ~H of an
electromagnetic wave and the magnetization ~M couples to the electric field ~E like,

~P = ε0χε~E + 1
c ξEH

~H and ~M = 1
c ξHE

~E + χm ~H ,

where ξEH and ξHE are the complex chirality coefficients. Show that a chiral medium
allows for a negative refraction coefficient.

7.3.7.7 Ex: Hyperbolic metamaterials

Hyperbolic metamaterials are artificial media with sub-wavelength nanostructuring
below exhibiting uncommon optical properties, such as an extreme anisotropy giving
rise to permittivity and permeability tensors of the form,

ε =




ε⊥

ε⊥

εq


 and µ =




µ⊥

µ⊥

µq


 .

In the case ε⊥εq < 0 or µ⊥µq < 0 the dispersion relation,

k2
x + k2

y

εq
+
k2
z

ε⊥
=

(ω/c)2

ε0
,

becomes hyperbolic.
Derive from the Maxwell equations, allowing for an anisotropic (but homogeneous)
permittivity tensor, the hyperbolic dispersion relation.

7.3.7.8 Ex: Stacked layer metamaterial

Show that the effective permittivity of a nanostructure having the shape of an alter-
nating stack of two different but intrinsically homogenous layers with the permittivity
εd and εm and thicknesses dd, dm � λ is given by,

ε⊥ =
εddd + εmdm
dd + dm

and εq =
dd/εd + dm/εm

dd + dm
.

7.3.7.9 Ex: Hyperbolic dispersion relation in gases

Discuss, whether it is possible to realize a hyperbolic dispersion relation in an atomic
gas.

7.3.7.10 Ex: TEM waves in a hollow wave guide

Verify that TEM waves can not occur in hollow waveguides. Do not use the already
derived results (7.239).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_HyperbolicRefraction12.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_HyperbolicRefraction13.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_HyperbolicRefraction14.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_HyperbolicRefraction04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_GuiaOnda01.pdf
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7.3.7.11 Ex: The TE00 mode in the rectangular waveguide

Show that the TE00 mode can not occur in a rectangular waveguide.

7.3.7.12 Ex: Cut-off frequency

Calculate the radial size of a hollow rectangular wave guide capable of guiding a
(i) 60 Hz signal, (ii) a 10 MHz signal, and (iii) a 9.1 GHz signal.

7.3.7.13 Ex: Cylindrical waveguide

Show that the fields (7.251) satisfy the Maxwell equations with the boundary condi-
tions (7.236) [42](p.411).

7.3.7.14 Ex: Propagation of a TEM mode along a coaxial cable

A transmission line made of two concentric circular metallic cylinders with conduc-
tivity ρ and skin depth δ is filled with a lossless uniform dielectric (ε, µ). A TEM
mode propagates along this line.
a. Show that the time averaged energy flux along the line is,

P =

√
µ

ε
πa2|H0|2 ln

b

a
,

where H0 is the maximum value of the azimuthal magnetic field on the surface of the
inner conductor.
b. Show that the transmitted power is attenuated along the line like,

P (z) = P0e
−2γz ,

where,

γ =
1

2σδ

√
ε

µ

a−1 + b−1

ln(b/a)
.

c. The characteristic impedance Z0 of the line is defined as the ratio between the
voltage between the cylinders and the current flowing in axial direction inside one of
the cylinders at any position z. Show that for this line,

Z0 =
1

2π

√
µ

ε
ln
b

a
.

d. Show that the resistance and the serial inductance per unit length of the line are,

R =
1

2πσδ

(
1

a
+

1

b

)
, L =

µ

2π
ln
b

a
+
µcδ

4π

(
1

a
+

1

b

)
,

where µc is the permeability of the conductor. The correction for the inductance
comes from the penetration of the flux into the conductors by the distance of the
order δ.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_GuiaOnda02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_GuiaOnda025.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_GuiaOnda03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_GuiaOnda04.pdf
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7.3.7.15 Ex: Resonant cavity

Consider a perfectly conducting resonant cavity having the shape of a 3D rectangular
box with the volume defined by x ∈ [0, Lx], y ∈ [0, Ly], and z ∈ [0, Lz]. Show that
the resonant frequencies for both the TE and TM modes are given by ωnx,ny,nz =

cπ
√

(nx/Lx)2 + (ny/Ly)2 + (nz/Lz)2 for integers ni. Find the associated electric and
magnetic fields.

7.3.7.16 Ex: Spherical holes in conductors such as cavities

A spherical hole of radius a in a conductive medium may serve as an electromagnetic
resonant cavity.
a. Assuming infinite conductivity, determine the transcendental equations for the
characteristic frequencies ω`m of the cavity for TE and TM modes.
b. Calculate numerical values for the wavelength λ`m in units of the radius a for the
four lowest modes for TE and TM waves.
c. Explicitly calculate the electric and magnetic fields inside the cavity for the lowest
TE mode and the lowest TM mode.

7.3.7.17 Ex: Schumann resonances

A resonant cavity consists of the void space between two perfectly conducting and
concentric spherical layers. The smaller one has the external radius a, the larger one
the internal radius b. The azimuthal magnetic field has a radial dependence given by
spherical Bessel functions, j`(kr) and n`(kr), where k = ω/c.
a. Write the transcendental equation for the characteristic frequencies of the cavity
for arbitrary `.
b. For ` = 1 use the explicit forms of the spherical Bessel functions to show that the
characteristic frequencies are given by,

tan kh

kh
=

k2 + (ab)−1

k2 + ab(k2 − a−2)(k2 − b−2)
,

where h = b− a.
c. For h/a � 1, verify that the result of part (b) reproduces the frequency found in
[48], Sec. 8.9, and determine the first-order corrections in h/a.
Now, we apply this cavity as a model for the atmosphere enclosed by the Earth’s
surface and its ionosphere.
d. For the Schumann resonances of Sec. 8.9 calculate the values Q under the assump-
tion that the Earth has the conductivity σe and the ionosphere the conductivity σi
with corresponding skin depths δe and δi. Show that in the lowest order in h/a the
value Q is given by Q = Nh/(δe + δi) and determine the numerical factor N for all `.
e. For the lowest Schumann resonance evaluate the valueQ assuming σe = 0.1 (Ωm)−1,
σe = 10−5 (Ωm)−1, h = 100 km.
f. Discuss the validity of the approximations used in part (a) for the parameter regime
used in part (b).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_GuiaOnda05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_GuiaOnda07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_GuiaOnda08.pdf
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7.3.7.18 Ex: Airy formula

To derive the Airy formulas, consider a light field described by Ein incident on a
Fabry-Pérot cavity of length L. The cavity mirrors are glass substrates having a
surface with dielectric coating. The surfaces of the two mirrors are characterized by
the transmission rates t1, t2 and reflection rates r1, r2. Note, that the reflected wave
suffers a phase shift of π, when the reflection occurs at a denser medium n > 1.
Disregard energy losses by absorption.

7.3.7.19 Ex: Airy formula for ring cavities

Derive the Airy formula for a ring cavity with one input coupler of reflectivity r and
N high reflecting mirrors of reflectivity 1. Calculate the resonant enhancement factor.

7.3.7.20 Ex: Linear cavity via transfer matrices

Derive the Airy formula using the transfer matrix formalism introduced in Sec. 7.1.7.

7.4 Beam and wave optics

While the propagation of high wavelength radiation is dominated by diffraction effects,
we observe that visible light tends to form bundles that apparently propagate (in
homogeneous media) in a straight line. With the invention of the laser, the optical
regime has become the preferred spectral regime for many spectroscopic applications.
Therefore, we will dedicate the following section to the propagation of laser beams,
which is understood within the theory of Gaussian optics.

7.4.1 Gaussian optics

At first glance, one might think that the propagation of laser light is well described by
the laws of geometrical optics. Closer inspection, however, shows that a laser beam
in many ways behaves more like a wave, although its energy is concentrated near an
optical axis. The fields satisfy the wave equation. By inserting the propagating wave
u = ψz(x, y)eı(kz−ωt), we obtain an equation similar to the Schrödinger equation [50],

0 =

[
1

c2
∂2

∂t2
−∇2

]
ψeı(kz−ωt) = eı(kz−ωt)

(
2ık

∂ψ

∂z
−∇2ψ

)
. (7.257)

In the so-called paraxial approximation, we neglect the second derivative for z, we
obtain, [

2ık
∂

∂z
−
(
∂2

∂x2
+

∂2

∂y2

)]
ψ = 0 . (7.258)

To describe a Gaussian beam, we choose an exponential ansatz and introduce two
parameters that may vary along the propagation axis z: ϕ(z) is a complex phase shift

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_GuiaOnda09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_GuiaOnda10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_GuiaOnda11.pdf
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and q(z) a complex parameter, whose imaginary part describes the diameter of the
beam. Inserting the ansatz

ψ = e−ı[ϕ(z)+k(x2+y2)/2q(z)] (7.259)

into the Schrödinger equation, we obtain,

0 = 2ıke−ı[ϕ+k(x2+y2)/2q]

(
−ı∂ϕ
∂z

+
ık(x2 + y2)

2q2

∂q

∂z

)
− 2e−ı[ϕ+k(x2+y2)/2q]−ık

q

− e−ı[ϕ+k(x2+y2)/2q]

(−ıkx
q

)2

− e−ı[ϕ+k(x2+y2)/2q]

(−ıky
q

)2

. (7.260)

This leads directly to the equation,

0 = (q′ − 1)
ık(x2 + y2)

q2
− 2ıϕ′ +

2

q
. (7.261)

For Eq. (7.261) to be valid at all x and y, we need q′ = 1 and ϕ′ = −ı
q . Integrating

q′, we find,
q(z) = q0 + z . (7.262)

It is practical to introduce real beam parameters

1

q
≡ 1

R
− ı λ

πw2
. (7.263)

Inserting this into the ansatz (7.259),

ψ = e−ıϕ−ı
k(x2+y2)

2R2 − (x2+y2)

w2 , (7.264)

it becomes clear that R(z) is the radius of curvature and w(z) is the diameter of the
beam. Evaluating q0 at the position of the focus (beam waist), where R =∞, we get
from (7.262) along with the definition (7.263),

1
1
Rz
− ı λ

πw2
z

= q(z) = q0 + z =
1

1
∞ − ı λ

πw2
0

+ z = ı
πw2

0

λ
+ z , (7.265)

The separation of this result into a real part and an imaginary part gives,

z

R
+
w2

0

w2
= 1 and

πw2

λR
=

λz

πw2
0

. (7.266)

Solving the second equation for 1/R and replacing this in the first equation gives an
equation for w,

w2 = w2
0

[
1 +

(
λz

πw2
0

)2
]
. (7.267)

This expression can now be replaced in the second equation,

R = z

[
1 +

(
πw2

0

λz

)2
]
. (7.268)
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We call zR ≡ q0 the Rayleigh length. Now we integrate ϕ′,

ϕ =

∫ z

0

−ı
q
dz =

∫ z

0

−ıdz
ızR + z

= −ı
∫ z

0

zdz

z2
R + z2

−
∫ z

0

zRdz

z2
R + z2

(7.269)

= − ı
2

ln
z2
R + z2

z2
R

− arctan
z

zR
= −ı ln w

w0
− arctan

λz

πw2
0

.

Hence,

ψ(r) =
w0

w
eı arctan(−z/q0)−ık(x2+y2)/2q . (7.270)

We note that the function |ψ|2 is normalized by the radial integral,

∫
|ψ|2dxdy =

w2
0

w2

∫
|e−k(x2+y2)/2q(z)|2dxdy (7.271)

=
w2

w2
0

(∫ ∞

−∞
e−2x2/w2

dx

)2

=
πw2

0

2
,

which is independent of z and thus ensures conservation of energy along the beam.
The intensity profile of a Gaussian beam is proportional to |ψ|2 and normalized to
the total power P , that is,

I(r) =
2P

πw2
0

|ψ(r)|2 =
2P

πw(z)2
e−2(x2+y2)/w(z)2 . (7.272)

Figure 7.27: (Left) Propagation of the beam along the optical axis. (Right) Cross section of
the Gaussian beam.

The above treatment shows that modes do not only exist in cavities but also in
free space. In Excs. 7.4.4.1 and 7.4.4.2 we are dealing with modes of Gaussian light
beams that are often used in laser beam optics.

Example 83 (Gaussian optics): The expansion of the Gaussian beam E(r) =

E0e−(x2+y2)/w(z)2−z2/z2R into plane waves simply is,

E(k) =

∫
E(r)eık·rd3r = E0e−(k2x+k2y)w(z)2−k2zz

2
R .
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7.4.1.1 Optical components

In geometrical optics (or ray optics) we work a lot with transfer matricesM defined by
their feature of transforming the two-component vector, which consists of the distance
of a ray from the optical axis y(z) and its divergence y′(z) 29:


y(z)

y′(z)


 =M


y(0)

y′(0)


 . (7.273)

Figure 7.28: (a) Image formation through a lens with ray optics. (b) Focusing a laser beam
with Gaussian optics.

Now, it is possible to show that the same matrixM can describe the transforma-
tion of a Gaussian beam through optical components along the optical axis, provided
that we apply the transformation to the beam parameter q in the following way:

q(z) =
M11q(0) +M12

M21q(0) +M22
. (7.274)

Hence, the transfer matrices allow us to calculate, how the parameters R and w
transform along the optical axis through optical elements or in free propagation. The
most common optical elements are lenses, crystals, prisms, mirrors, and cavities. For
example, the matrix for free propagation of a beam over a distance d is,

Mdist =


1 d

0 1


 , (7.275)

and the matrix describing the passage through a thin lens with focal length f ,

Mlens =


 1 0

−1/f 1


 . (7.276)

In Exc. 7.4.4.3 we use these matrices to derive the lens equations in ray optics and
Gaussian optics.

29Note that these matrices have nothing to do with the matrices describing the transmission and
reflection of electric and magnetic fields by interfaces.
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7.4.1.2 Modes of a linear cavity

We will now apply the formalism of the transfer matrices to calculate the modal
structure of a linear cavity. LetM be the matrix describing the round-trip of a beam
of light in the cavity. For the cavity to be stable, the fields must be stationary. This
is only possible if the mode geometry is self-consistent. That is, at any position z,
the beam parameter q(z) = qz must satisfy [50],

qz =
M11qz +M12

M21qz +M22
. (7.277)

Using, M11M22 −M12M21 = 1, the condition (7.277) can be solved by,

1

qz
=
M22 −M11

2M12
± ı

2M12

√
4− (M11 +M22)2 , (7.278)

or separating the real part from the imaginary part according to the definition (7.263)
of the beam parameter,

w2
z =

2λM12

π
√

4− (M11 +M22)2
and Rz =

2M12

M22 −M11
. (7.279)

Figure 7.29: (code) (Left) Scheme of a linear cavity. (Right) Radial profiles of the
lowest order transverse Hermite-Gaussian modes TEMmn of a linear cavity.

We now consider the cavity of length L schematized in Fig. 7.29. It consists of
two mirrors with radii of curvature ρa and ρb. The transfer matrix for a round-trip
beginning and ending at the position of mirror ’a’ is,

M =


 1 0

−1/fa 1




1 L

0 1




 1 0

−1/fb 1




1 L

0 1


 (7.280)

=
1

fafb


 fa(fb − L) faL(2fb − L)

L− fb − fa L(L− 2fb) + fa(fb − L)


 ,

where fk = −ρk/2 are the focal lengths of the mirrors. With (7.279) we obtain the
diameter wa and the radius of curvature Ra of the beam at the position of the mirror
’a’,

w2
a =

2λfaL(2fb − L)

π
√

4f2
af

2
b − (L2 − 2faL− 2fbL+ 2fafb)2

and Ra = −2fa . (7.281)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_CavityModes.m


314 CHAPTER 7. ELECTROMAGNETIC WAVES

Applying the second equation (7.266), we find,

λa

πw2
0

=
πw2

a

λRa
=

L(2fb − L)√
4f2
af

2
b − (L2 − 2faL− 2fbL+ 2fafb)2

, (7.282)

and analogously for λb/πw2
0. We replace fk = ρk/2 and introduce the abbreviation,

xa ≡
πw2

a

λRa
=

2L
ρa

(
1− L

ρb

)

√
1−

(
1− 2L

ρa
− 2L

ρb
+ 2L2

ρaρb

)2
, (7.283)

and analogously for xb. With the help of MAPLE we calculate,

xaxb − 1√
(1 + x2

a)(1 + x2
b)

=

√
1− L

ρa

√
1− L

ρb
. (7.284)

The phase shift between the waist of the beam and mirror ’a’ is given by the real part
of the formula (7.269). The phase shift accumulated between the mirrors ’a’ and ’b’
is,

ϕ = ϕa + ϕb = arctanxa + arctanxb (7.285)

= π − arccos
xaxb − 1√

1 + x2
a

√
1 + x2

b

= π − arccos

√
1− L

ρa

√
1− L

ρb
,

where we used tabulated trigonometric relationships to convert the arctan into a
arccos.

The spectrum of transverse modes follows from the condition, that the total phase
is a multiple of π, i.e.,

N =
kL+ ϕ

π
=

2Lν

c
+
ϕ

π
, (7.286)

that is,

ν

δfsr
= N − 1 +

1

π
arccos

√(
1− L

ρa

)(
1− L

ρb

)
, (7.287)

where we used the free spectral range δfsr ≡ c/2L. This formula represents a gener-
alization of the previously derived formula (7.252), which only holds in the limit of
plane waves, ρk →∞.

The diameter of the beam waist in the cavity is,

w0 =
4

√(
λ

π

)2
L(ρa − L)(ρb − L)(ρa + ρb − L)

(ρa + ρb − 2L)2
. (7.288)

For optimum coupling, the geometries of the Gaussian light beam and of the cavity
must be matched, i.e. the diameter and divergence of the laser beam must be adjusted
to the cavity mode, e.g. using a suitable arrangement of lenses. In Exc. 7.4.4.4, we
will extend the calculation to ring cavities.
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7.4.1.3 Hermite-Gaussian transverse modes

We can generalize the ansatz (7.259) to allow for more complicated radial intensity
distributions described by the functions g and h,

ψ = g
( x
w

)
h
( y
w

)
e−ı[ϕ(z)+k(x2+y2)/2q(z)] . (7.289)

Inserting the ansatz into the equation (7.258), we will show in Exc. 7.4.4.5, that the
solution is given by,

ψ(x, y, z) =
w0

w
Hm

(√
2x
w

)
Hn

(√
2y
w

)
e
ı(m+n+1) arctan 2z

kw2
0
−r2( 1

w2 + ık
2R )

. (7.290)

Fig. 7.29(right) shows radial profiles of the lowest order transverse Hermite-Gaussian
modes TEMmn of a linear cavity.

In the presence of higher-order transverse modes TEMmn the cavity spectrum
becomes,

ν

δfsr
= N − 1 +

m+ n+ 1

π
arccos

√(
1− L

ρa

)(
1− L

ρb

)
. (7.291)

This formula can be derived using the self-consistency requirement for the light beam
circulating inside the cavity. It represents yet another generalization of the formula
(7.252) and lifts the degeneracy of the longitudinal modes described by the Airy for-
mula and exhibited in Fig. 7.26. On the other hand, a confocal cavity with degenerate
transverse modes, ρa = ρb = L, is particularly suited to work as a spectrum analyzer.

7.4.1.4 Splitting of TEMmn modes having the same m+ n

In a cylindrically symmetric mode, all modes TEMmn with the same m+n are degen-
erate. If however cylindrical symmetry is broken, e.g. due to alignment imperfection
or in the case of a ring cavity, the degeneracy is lifted [88]. If the problem of tilted in-
cidence of the beams onto a mirror surface can be boiled down to assuming elliptically
shaped mirrors, i.e. mirrors having different radii of curvatures in two orthogonal axis,
the different phase shifts for the two axis can be calculated, as discussed in Exc. 7.4.4.4
and in Ref. [32]:

ν/δfsr = (q + 1) + 2
2m+ 1

2π
φh + 2

2n+ 1

2π
φv . (7.292)

where φk = arccos

√(
1− 2a

ρk

)(
1− b

ρk

)
for k = h, v. The splitting between the

TEM01 and TEM10 modes is,

2
π arccos

√(
1− 2a

ρh

)(
1− b

ρh

)
− 2

π arccos

√(
1− 2a

ρv

)(
1− b

ρv

)
. (7.293)

The splitting observed for ring cavities is on the same order as the free spectra range.
Furthermore, different phase shifts in the dielectric surfaces lead to different reso-

nance conditions [55]. Since, according to Fresnel’s formulas, s and p-polarized light
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fields have different reflectivities under inclined incidence on mirrors, they also suffer
different phase shifts and, hence, exhibit different eigenfrequencies of the cavity. In
high-finesse ring cavities this leads to a dramatic splitting of s and p-polarized modes,
which can be on the order of the free spectral range itself.

7.4.2 Non-Gaussian beams

The Hermite-Gaussian ansatz (7.289) to solve the wave equation represents only one
possibility. But we nowadays know a large variety of beams with different transverse
distributions of intensity, polarization and angular momentum. Examples are trans-
verse Gaussian modes with Cartesian or circular symmetry, Bessel modes, Laguerre-
Gaussian modes with angular momentum, and modes with radial or azimuthal polar-
ization.

7.4.2.1 Bessel beams

Ideally, a Bessel beam (BB) is a non-diffracting monochromatic solution to the scalar
wave equation in cylindrical coordinates carrying an infinite amount of energy [31, 64].
Inserting into the wave equation,

(
1

c2
∂2

∂t2
−∇2

)
ψ(r, t) = 0 (7.294)

the ansatz,

ψ(r, t) = eı(βz−ωt)
∫ 2π

0

A(φ)eıα(x cosφ+y sinφ)dφ , (7.295)

we get the dispersion relation,

α2 + β2 =
ω2

c2
. (7.296)

For β real the intensity profile does not vary along the z-axis,

|ψ(r, t)|2 =

∣∣∣∣
∫ 2π

0

A(φ)eıα(x cosφ+y sinφ)dφ

∣∣∣∣
2

= |ψ(x, y, z = 0, t)|2 . (7.297)

For axial symmetry A(φ) = A, we get what is called the 2st type 0-order Bessel beam,

ψ(r, t) = Aeı(βz−ωt)
∫ 2π

0

eıα(x cosφ+y sinφ)dφ = Aeı(βz−ωt)J0(αρ) . (7.298)

For 0 < α ≤ ω/c we get a non-trivial solution decaying like (αρ)−1.
In its simplest form, the electric field of an arbitrary ν-th order BB with wavelength

λ can be written as,

E(ρ, φ, z) = A0 exp(ıkzz)Jν(kρρ) exp(ıνφ) , (7.299)

where A0 is the electric field strength and Jν is the ν-th order Bessel function of the
first kind. In Eq. (7.299), kz and kρ are the longitudinal and transverse wave numbers
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satisfying the dispersion relation k2 = k2
z + k2

ρ = (2π/λ)2, such that kz = k cos θ and
kρ = k sin θ, being θ the axicon angle associated to the tilted plane of waves propagat-
ing along the surface of a cone of half-angle θ in the angular spectrum decomposition.
Cylindrical coordinates (ρ, φ, z) have been adopted, and a time harmonic factor eıωt

has been omitted for brevity. For our purposes, the Rayleigh range is an essential
parameter to be considered since the non-diffracting beam must propagate through a
20 cm long differential vacuum tube to minimize losses of atoms during their guidance
to the science chamber. The maximum propagation distance up to which a BB can
overcome diffraction is given by Zmax = 2πRr̄/λ, where R is the aperture radius and
r̄ is the beam radius [31]. It should be noticed that, in general, Zmax is much greater
than the Rayleigh range of a Gaussian beam with an equivalent beam waist radius
wg = r̄.

Example 84 (Frozen Bessel beams): Certain superposition of these non-
diffracting Bessel beams have interesting properties,

ψ(r, t) = e−ıωt
N∑

n=−N

AnJ0(kρnρ)eıβnz . (7.300)

A frozen Bessel beam can be constructed by a continuous superposition of 0th-
order scalar BBs over the longitudinal wavenumber kz, as given by the following
integral solution of the scalar Helmholtz equation with azimuthal symmetry,

Ψ0(ρ, z, t) = e−ıωt
∫ k

−k
S(kz)J0(ρ

√
k2 − k2

z)e
−ıkzzdkz , (7.301)

where k ≡ ω/c and k2
ρ ≡ ω2/c2−kz is the transverse wave number. The quantity

k2
ρ must be positive since evanescent waves do come into play.

Higher-order Bessel beams can be constructed via [104, 103],

Ψ1(ρ, φ, z) = UΨ0(ρ, z) with U ≡ eıφ
(
∂

∂ρ
+
ı

ρ

∂

∂φ

)
, (7.302)

Apparently, they can carry angular orbital momentum.

7.4.3 Fourier optics

In the following sections we will derive from the general Huygens principle an expres-
sion describing the propagation of phase fronts. We will also show how it can be used
for numerical calculations of phase front propagation.

7.4.3.1 Rayleigh-Sommerfeld solution

We consider the propagation of monochromatic light from a 2D planar source of
area Σ indicated by the coordinates ξ and η, as illustrated in Fig. 7.30. The field
distribution in the source plane is given by ψ0(ξ, η), and the field ψz(x, y) in a distant
observation plane can be predicted using the first Rayleigh-Sommerfeld diffraction
solution [39, 98],

ψz(x, y) =
1

ıλ

x

Σ

z

r12

eıkr12

r12
ψ0(ξ, η)dξdη . (7.303)
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The formula will be derived from the wave equation in Exc. 7.4.4.6. Here, z is the
distance between the centers of the source and observation coordinate systems and

r12 =
√
z2 + (x− ξ)2 + (y − η)2 (7.304)

is the distance between a position on the source plane and a position in the observation
plane, with the planes assumed to be parallel.

Figure 7.30: Propagation geometry for parallel source and observation planes. Every point
of the source plane generates a spherical wave ∝ eıkr12/r12. The projection of the field
within a solid angle element onto the xy-plane, which is proportional to z/r12 generates a
new spherical wave propagating further along the z optical axis.

Expression (7.303) is a statement of the Huygens-Fresnel principle, which supposes
that the source acts as an infinite collection of fictitious point sources located at (ξ,η),
each one producing a spherical wave. The interference of the spherical waves at any
observation position (x,y), expressed by the projection onto the propagation axis z in
(7.303), can be written as a two-dimensional convolution integral,

ψz(x, y) =
x

Σ

hz(x− ξ, y − η)ψ0(ξ, η)dξdη = (hz ∗ ψ0)(x, y) , (7.305)

where the general form of the Rayleigh-Sommerfeld impulse response,

hz(x, y) =
z

ıλ

eıkr

r2
, (7.306)

where r =
√
z2 + x2 + y2 is simply the field distribution ψz(x, y) observed in case of

a point-like source ψ0(ξ, η) = δ(ξ)δ(η).
The Fourier convolution theorem allows to write Eq. (7.305) as,

ψz(x, y) = F−1{F [hz ∗ ψ0](x, y)} = F−1{F [hz(x, y)]F [ψ0(x, y)]} , (7.307)

where F denotes the two-dimensional Fourier transform. Introducing the Rayleigh-
Sommerfeld transfer function Hz, we may also write,

ψz(x, y) = F−1{Hz(fx, fy) · F [ψ0(x, y)]}

where Hz(fx, fy) = eıkz
√

1−(λfx)2−(λfy)2
. (7.308)

Strictly speaking,
√
f2
x + f2

y < λ−1 must be satisfied for propagating field compo-

nents. The Rayleigh-Sommerfeld expression is the most accurate diffraction solution
as, other than the assumption of scalar diffraction, this solution only requires that
r � λ, the distance between the source and the observation position, be much greater
than a wavelength.
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7.4.3.2 Fresnel approximation

Let us simplify the transfer function by expanding the distance (7.304),

r12 ' z + 1
2

(x−ξ)2
z + 1

2
(y−η)2

z , (7.309)

which amounts to assuming a parabolic radiation wave rather than a spherical wave
for the fictitious point sources. Furthermore, we use the approximation r12 ' z in the
denominator of Eq. (7.303) to arrive at the Fresnel diffraction expression:

ψz(x, y) =
eıkz

ıλz

x

Σ

eık[(x−ξ)2+(y−η)2]/2zψ0(ξ, η)dξdη . (7.310)

This expression is also a convolution of the form in Eq. (7.305), where the impulse
response is,

hz(x, y) =
eıkz

ıλz
eıkρ

2/2z , (7.311)

and the transfer function is,

Hz(fx, fy) = eıkze−ıπzλ(f2
x+f2

y ) . (7.312)

The expressions in Eqs. (7.308) are again applicable in this case for computing diffrac-
tion results.

Another useful form of the Fresnel diffraction expression is obtained by moving
the quadratic phase term in x and y outside the integrals:

ψz(x, y) =
eıkz

ıλz
eık(x2+y2)/2z

x

Σ

eık(ξ2+η2)/2ze−ık(xξ+yη)/zψ0(ξ, η)dξdη . (7.313)

7.4.3.3 Fraunhofer approximation

Fraunhofer diffraction, which refers to diffraction patterns in a regime that is com-
monly known as the ’far field’, is arrived at by approximating the chirp term multi-
plying the initial field within the integrals of Eq. (7.313) as unity. The assumption
involved is,

z � max[k2 (ξ2 + η2)] (7.314)

and results in the Fraunhofer diffraction expression:

ψz(x, y) =
eıkz

ıλz
eıkρ

2/2z
x

Σ

e−ık(xξ+yη)/zψ0(ξ, η)dξdη

=
eıkz

ıλz
eı

k
2z ρ

2

(Fψ0)(kxz ,
ky
z )

. (7.315)

Along with multiplicative factors out front, the Fraunhofer expression can be recog-
nized simply as a Fourier transform of the source field. The condition of Eq. (7.314),
typically, requires very long propagation distances relative to the source support size.
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However, a form of the Fraunhofer pattern also appears in the propagation anal-
ysis involving lenses. The Fraunhofer diffraction expression is a powerful tool and
finds use in many applications such as laser beam propagation, image analysis, and
spectroscopy.

The Fraunhofer expression cannot be written as a convolution integral, so there
is no impulse response or transfer function. But, since it is a scaled version of the
Fourier transform of the initial field, it can be relatively easy to calculate, and as
with the Fresnel expression, the Fraunhofer approximation is often used with success
in situations where Eq. (7.314) is not satisfied. For simple source structures such as
a plane-wave illuminated aperture, the Fraunhofer result can be useful even when
Eq. (7.314) is violated by more than a factor of 10, particularly if the main quantity
of interest is the irradiance pattern at the receiving plane. Using the Fresnel number
defined as,

NF =
max(ξ2 + η2)

zλ
, (7.316)

the commonly accepted requirement for the Fraunhofer region is NF � 1.

7.4.3.4 Diffraction limit and Rayleigh criterion

In Exc. 7.4.4.8 we calculate the angle at which light diffracted by a circular pinhole
of diameter 2a has its first destructive interference fringe,

θ0 ' sin θ0 = 1.22
λ

2a
. (7.317)

Thus, a second pinhole displaced from the first one by a distance d > 2a can be re-
solved. This is called the Rayleigh criterion for resolving two incoherent point sources.
Smaller distances cannot be resolved, as they are below the so-called diffraction limit.

Figure 7.31: Illustration of the Rayleigh criterion.

7.4.3.5 Propagation of phase fronts across optical elements

To propagate an optical phase front located at z0, we conveniently start from a Gaus-
sian laser beam,

ψGauss(ρ) = e−ρ
2/w2

0 . (7.318)

with ρ =
√
x2 + y2 the distance from the optical axis. For a given total power the

electric field is obtained via normalization,

E0 =

√
P

1
2ε0c

∫
|u|2d2ρ

, (7.319)
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where η ≡
√
µ0/ε0 = 1/(ε0c) is the vacuum impedance.

Optical elements can shape the phase front of a light beam by phase shift or
absorption. If the element can be assumed to be thin we may neglect the axial
displacement, ∆z ' 0, and simply multiply the phase front with an xy-matrix,

ψ′z(x, y) = e−αcomponent(x,y)ψz(x, y) , (7.320)

where α(x, y) = σ(x, y)+ıδ(x, y). For instance, a pinhole with radius R will transform
a phase front like,

αpinhole(ρ) =∞Θ(ρ−R) , (7.321)

where Θ is the Heavyside function. A thin lens with focal distance f will transform
a phase front like,

αlens(ρ) = ı kRρ
2 = ı k2f ρ

2 , (7.322)

where R is the radius of the spherical lens. For an axicon of base angle α made of
material with refractive index nrfr,

αaxicon(ρ) = ık(nrfr − 1)ρ tanα . (7.323)

In Excs. 7.4.4.7 to 7.4.4.9 we will derive the phase front transformation matrices for
other interesting optical components. We will do a numerical simulation in 7.4.4.10.

7.4.4 Exercises

7.4.4.1 Ex: Gaussian light mode

The light of a laser propagates in light modes called Gaussian. A beam propagat-
ing along êz and linearly polarized along êx is described by the potential vector,
A(r, t) = êxu(r)eı(ωt−kz), where u(r) = u0

w(z)e
−(x2+y2)/w(z)2 is the energy density and

w(z) = w0

√
1 + (λz/πw2

0)2 the diameter of the beam at the position z. Calculate the

Poynting vector in the Lorentz gauge, Φ = − c2

ıω∇ ·A.

7.4.4.2 Ex: Volume and power of a Gaussian beam mode

a. Derive the expression for the mode volume Vm of a Gaussian beam of length L
from the definition I(0)Vm =

∫
I(r)dV .

b. In quantum mechanics we learn, that the zero point energy of the harmonic oscilla-
tor is ~ω/2. Use this notion to calculate the maximum electric field amplitude E1(0)
created by a single photon in terms of the mode volume.
c. A linear cavity of length L has the free spectral range δfsr = c/2L. Express the
power of the beam in terms of the number of photons contained in the cavity.

7.4.4.3 Ex: The lens in ray and wave optics

a. Use the transfer matrices (7.275) and (7.276) to derive the lens equations of geo-
metric optics from the relation (7.273).
b. Now, use the transfer matrices (7.275) and (7.276) to derive, from the relation
(7.273), the transformation of a Gaussian beam. How do the waists behave upon

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_OpticaGaussiana01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_OpticaGaussiana02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_OpticaGaussiana03.pdf
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transformation?
c. You have a laser of λ = 632 nm wavelength producing a Gaussian beam of diameter
w1 = 1 mm in its waist. Now, you want to match the beam into a cavity, whose mode
(defined by the radii of curvature of the mirrors) has a waist of diameter w2 = 100µm.
To do this, you have at your disposal a lens of f = 500 mm focal distance. Using the
formulas derived in (b), determine, how the distances d1 (between the location of the
waist of the laser beam and the lens) and d2 (between the lens and the location of
the waist of the cavity) must be chosen.

7.4.4.4 Ex: Transverse modes of a ring cavity

In this exercise we consider a ring cavity made of a plane input coupler and two
identical curved high-reflectors (radius of curvature ρ = 2f) forming an isosceles
triangle. Let a = L/(2 +

√
2) be the two short distances and b = L/(1 +

√
2) the long

one, so that L = 2a+ b.
a. How many waists does the cavity modes have, and where are they located?
b. Derive the round-trip matrix starting from the location of any one of the waists.
c. Calculate the waists.
d. Calculate the transverse mode spectrum, and prepare a plot for ρ = 30 cm and
L = 8.7 cm.
e. The above results presume cylindrical symmetry. However, incidence on curved
mirrors under a tilted angle θ produces astigmatism. This can be accounted for by
assuming different radii of curvature for the horizontal and vertical axis:

Rh = R cos θ and Rv = R/ cos θ . (7.324)

Calculate the impact waist sizes in the horizontal and vertical axis.

7.4.4.5 Ex: Transverse Hermite-Gauss modes

Derive the spectrum of Hermite-Gauss transverse modes.

7.4.4.6 Ex: Derivation of the Rayleigh-Sommerfeld formula

Derive the Rayleigh-Sommerfeld formula (7.303).

7.4.4.7 Ex: Phasefront distorsion by an axicon and a thin lens

Calculate the phasefront distorsion suffered by a plane wave upon traversing (a) an
axicon with base angle α and (b) a thin lens with focal length f .

7.4.4.8 Ex: Transmission through a pinhole

Calculate the light field distribution after a circular pinhole of radius a.

7.4.4.9 Ex: Transmission through a various optical components

Calculate the phase front transformation matrix
a. for a Fresnel zone plate
b. for a Laguerre-Gauss zone plate.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_OpticaGaussiana05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_OpticaGaussiana04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_OpticaGaussiana10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_OpticaGaussiana06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_OpticaGaussiana07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_OpticaGaussiana08.pdf
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7.4.4.10 Ex: Numerical phasefront propagation

Numerical phasefront propagation through a thin lens.

7.5 Further reading

7.5.1 on optics

H. Kogelnik et al., Laser Beams and Resonators [DOI]

D.G. Voelz, Computational Fourier Optics: a MATLAB tutorial [ISBN]

P.R. Berman, Optical Faraday rotation [DOI]

G. Labeyrie et al., Large Faraday rotation of resonant light in a cold atomic cloud
[DOI]

W.J. Wild et al., Goos-Haenchen shifts from absorbing media [DOI]

7.5.2 on metamaterials

J. Sinova et al., Spin Hall effects [DOI]

J.B. Pendry, Negative refraction makes a perfect lens [DOI]

J.B. Pendry, A chiral route to negative refraction [DOI]

S.M. Rytov, Electromagnetic properties of a finely stratified medium [DOI]

P. Szarek, Electric permittivity in individual atomic and molecular systems through
direct associations with electric dipole polarizability and chemical hardness [DOI]

V.G. Veselago, The electrodynamics of substances with simultaneously negative values
of E and M [DOI]

A. Poddubny et al., Hyperbolic metamaterials [DOI]

P. Shekhar et al., Strong Coupling in Hyperbolic Metamaterials [DOI]

H.N.S. Krishnamoorthy et al., Topological transitions in metamaterials [DOI]

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_OpticaGaussiana09.pdf
http://doi.org/10.1364/AO.5.001550
http://isbnsearch.org/isbn/978-0-819-48204-4
http://doi.org/10.1119/1.3266970
http://doi.org/10.1103/PhysRevA.64.033402
http://doi.org/10.1103/PhysRevA.25.2099
http://doi.org/10.1103/RevModPhys.87.1213
http://doi.org/10.1103/PhysRevLett.85.3966
http://doi.org/10.1126/science.1104467
http://doi.org/www.jetp.ac.ru/cgi-bin/dn/e_002_03_0466.pdf
http://doi.org/10.1021/acs.jpcc.7b02626
http://doi.org/10.1070/PU1968v010n04ABEH003699
http://doi.org/10.1038/nphoton.2013.243
http://doi.org/10.1103/PhysRevB.90.045313
http://doi.org/10.1126/science.1219171
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Chapter 8

Radiation

In the previous sections we discussed the propagation of electromagnetic waves, but
we do not say how these waves were produced in the first place. For now, we only
know, that it need’s accelerated charges or varying currents. Now, we will show how
such ’sources’ can emit energy by ’radiating’ electromagnetic waves.

To begin with, let us consider sources located near the origin and confined within
a sphere of radius r. The total power crossing the sphere’s surface is the integral of
the Poynting vector,

P (r) =

∮
~S · da = 1

µ0

∮
(~E × ~B) · da . (8.1)

The radiated power is then the energy per unit area transported to infinity without
ever returning,

Prad = lim
r→∞

P (r) . (8.2)

Now, the area of the sphere’s surface is 4πr2 such that, in order to have non-
vanishing radiation, the Poynting vector must decrease (for large r) no faster than as
1/r2. Following the Coulomb law, electrostatic fields decrease like 1/r2 or faster, when
the total enclosed charge is zero. And Biot-Savart’s law states that magnetostatic
fields decrease at least as fast as 1/r2, such that | ~S| ∝ 1/r4, for static configurations.
Hence, static sources do not radiate. On the other hand, Jefimenko’s equations (6.109)
and (6.112) indicate the existence of time-dependent terms (involving %̇ and j̇), which
are proportional to 1/r. These are the terms responsible for electromagnetic radiation.

To study the radiation we choose the parts of ~E and ~B going as 1/r at large distances

from the source, combine them to terms going as 1/r2 in the Poynting vector ~S, and

integrate ~S on a large spherical surface taking the limit r →∞.

8.1 Multipolar expansion of the radiation

8.1.1 The radiation of an arbitrary charge distribution

In this section we will calculate the radiation emitted by arbitrary time-dependent
variations of charge and current distributions, but which are confined within a small
volume near the origin. The retarded scalar potential is according to (6.106),

Φ(r, t) =
1

4πε0

∫
%(r′, t−R/c)

R
d3r′ , (8.3)

325
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where R =
√
r2 + r′2 − 2r · r′, as illustrated in Fig. 6.10. Within the small source

approximation, r′ � r, we have,

R ' r
(

1− r · r′
r2

)
and

1

R
' 1

r

(
1 +

r · r′
r2

)
, (8.4)

such that, defining,

t0 ≡ t− r
c , (8.5)

we obtain,

%(r′, t−R/c) ' %(r′, t− r
c + êr·r′

c ) ≡ %(r′, t0 + êr·r′
c ) . (8.6)

Expanding % in a Taylor series around the retarded time at the origin t0, we get,

%(r′, t−R/c) ' %(r′, t0) + %̇(r′, t0) êr·r′
c + ... . (8.7)

Substituting the numerator and denominator in the formula (8.3) by the expansions
(8.4) and (8.7) we get up to the first order,

Φ(r, t) =
1

4πε0r

[∫
%(r′, t0)d3r′ +

êr
r
·
∫

r′%(r′, t0)d3r′ +
êr
c
· d
dt

∫
r′%(r′, t0)d3r′

]
.

(8.8)
The first integral is simply the charge 1, the other two represent the electric dipole at
time t0,

Φ(r, t) =
1

4πε0

[
Q

r
+

êr · d(t0)

r2
+

êr · ḋ(t0)

cr

]
. (8.9)

In the static case, the first two terms are the contributions of the monopole and dipole
to the multipolar expansion of Φ, the third term would not be present.

The vector potential,

A(r, t) =
µ0

4π

∫
j(r′, t−R/c)

R
d3r′ , (8.10)

is easily expanded up to first order by,

A(r, t) ' µ0

4πr

∫
j(r′, t0)d3r′ , (8.11)

since, as we will show in Exc. 8.1.6.1,

A(r, t) ' µ0

4π

ḋ(t0)

r
, (8.12)

that is, d ∼ r′ is already of first order in r′.
Now we must calculate the fields. Again, we are interested in the radiation zone

(that is, in fields surviving great distances from the source), discarding all terms in ~E
and ~B which decrease like 1/r2 or faster, which will not be the case for the first term

1The charge is evaluated at time t0, but since it is conserved, it stays the same at all times.
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(Coulomb) and the second term in (8.9). Therefore, considering the abbreviation
(8.5), we obtain,

∇Φ ' 1

4πε0
∇ êr · ḋ(t0)

rc
=

1

4πε0


 ḋ(t0)

cr2

0

+
êr · d̈(t0)

cr
∇t0 −

2êr · ḋ(t0)

cr2
êr

0


' 1

4πε0

êr · d̈(t0)

cr

(
− êr
c

)
. (8.13)

Similarly,

∇×A = ∇× µ0

4π

ḋ(t0)

r
=
µ0

4π

[
1

r
∇× ḋ(t0) +

(
∇1

r

)
× ḋ(t0)

]
(8.14)

=
µ0

4π


− d̈(t0)

r
×∇t0 −

êr × ḋ(t0)

r2

0
 = −µ0

4π

d̈(t0)

r
×
(−êr

c

)
= −µ0

4π

êr × d̈(t0)

cr
.

and,

∂A

∂t
' µ0

4π

d̈(t0)

r
. (8.15)

Hence, the Eqs. (6.78) tell us,

~E(r, t) ' µ0

4πr
[(êr · d̈(t0))êr − d̈(t0)] =

µ0

4πr
[êr × (êr × d̈(t0)] (8.16)

~B(r, t) ' − µ0

4πcr
[êr × d̈(t0)] .

In spherical coordinates,

~E(r, θ, φ, t) ' µ0d̈(t0)

4π

sin θ

r
êθ and ~B(r, θ, φ, t) ' µ0d̈(t0)

4πc

sin θ

r
êφ . (8.17)

The Poynting vector is,

~S ' 1
µ0

~E × ~B =
µ0d̈(t0)2

16π2c

sin2 θ

r2
êr , (8.18)

which is a result that we already used in (7.112). And for total radiated power we
get the Larmor formula,

P '
∮

~S · da =
µ0d̈(t0)

6πc
. (8.19)

The calculation is equivalent to a multipolar expansion of the retarded potentials
up to the lowest order in r′ which can still radiate, and which turns out to be an
electric dipole radiation. Multipolar orders of radiation usually only come into play,
when for some reason (e.g. a selection rule) the electric dipole radiation cancels. The
next multipolar order will be, as we will soon see, a combination of magnetic dipole
and quadrupolar electric radiation.
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8.1.2 Multipolar expansion of retarded potentials

In order to simplify the multipolar treatment, we use the superposition principle, al-
lowing us to decompose any temporal oscillation of a charge distribution into harmonic
oscillations,

%(r, tr) = %(r)e−ıωtr and j(r, tr) = j(r)e−ıωtr . (8.20)

By inserting these dependencies into the retarded potentials (6.106), we obtain with
tr = t− |r− r′|/c,

Φ(r) =
1

4πε0

∫
%(rr)

eık|r−r
′|

|r− r′| d
3r′ and A(r) =

µ0

4π

∫
j(r′)

eık|r−r
′|

|r− r′| d
3r′ , (8.21)

with k = ω/c and implying Φ(r, t) = Φ(r)e−ıωt and A(r, t) = A(r)e−ıωt.
From these expressions we can, knowing the sources (8.20), calculate the fields via

the expressions (6.78) or alternatively (based only on the vector potential) via,

~B = ∇×A and ~E = ıc2

ω ∇× ~B and ~B = −ı
ω ∇× ~E , (8.22)

where ~E is evaluated outside the source. We will consider sources which are small
(size d) compared to the wavelength λ and distinguish three regions characterized by
fields with very different properties:

• near-field (or static) zone r′ < d� r � λ

• intermediate (or inductive) zone r′ < d� r ∼ λ
• far-field (or radiative) zone r′ < d� λ� r

Figure 8.1: Geometry of source (r′ < d) and observer (r > d) coordinates.

To handle the expression (8.21) we expand the Green function into spherical har-
monics,

eık|r−r
′|

4π|r− r′| = ık

∞∑

`=0

h
(1)
` (kr>)j`(kr<)

∑̀

m=−`

Y ∗`m(θ′, φ′)Y`m(θ, φ) , (8.23)

where (placing the observer out of the source region) r< ≡ min(r, r′) = r′ and r> ≡
max(r, r′) = r. j` and h

(1)
` are the Bessel functions and Hankel functions of the first

type. This formula can be simplified by the sum rule,

∑̀

m=−`

Y ∗`m(êr′)Y`m(êr) =
2`+ 1

4π
P`(êr′ · êr) , (8.24)
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where P` are Legendre polynomials. We write,

eık|r−r
′|

|r− r′| = ık

∞∑

`=0

(2`+ 1)h
(1)
` (kr)j`(kr

′)P`(êr′ · êr) . (8.25)

For observation points r out of the source (which is certainly satisfied in the limit
r′ � r) the Eq. (8.21) becomes,

A(r) =
µ0

4π
(2`+ 1)ık

∞∑

`=0

h
(1)
` (kr)

∫
j(r′)j`(kr

′)P`(êr′ · êr)d3r′ . (8.26)

Since we will always be considering the limit kr′ � 1, we can expand the Bessel
function for small arguments,

j`(x)
x→0−→ x`

(2`+ 1)!!

(
1− x2

2(2`+ 3)
+ ...

)
. (8.27)

We obtain for the vector potential,

A(r) ' µ0

4π
ık

∞∑

`=0

1

(2`− 1)!!
h

(1)
` (kr)

∫
j(r′)(kr′)`P`(êr′ · êr)d3r′ . (8.28)

Now, let us discuss the limiting cases by comparing the observation distance r
with the wavelength. In the near-field zone, where kr � 1, we can also expand the
Bessel function for small arguments,

n`(x)
x→0−→ − (2`− 1)!!

x`+1

(
1− x2

2(1− 2`)
+ ...

)
(8.29)

and h
(1)
` (x) = j`(x) + ın`(x)

x→0−→ ın`(x) ,

resulting in the vector potential,

A(r)
kr→0−→ µ0

4π
k

∞∑

`=0

1

(kr)`+1

∫
j(r′)(kr′)`P`(êr′ · êr)d3r′ . (8.30)

This formula could already have been derived by approximating the exponential of
the formula (8.21) by eık|r−r

′| ' 1 and expanding the following Green function into
spherical harmonics 2,

1

4π|r− r′| =

∞∑

`=0

∑̀

m=−`

1

2`+ 1

r`<
r`+1
>

Y ∗`m(θ′, φ′)Y`m(θ, φ) . (8.31)

2This expansion is obtained by expanding the Legendre polynomials in the expansion (2.91),

1

|r− r′| =
1

r

∞∑
`=0

r`<

r`+1
>

P`(cos θ′) with P`(cos θ′) =
4π

2`+ 1

∑̀
m=`

Y ∗`m(θ′, φ′)Y`m(θ, φ) ,

.
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The absence of propagating terms in the expression (8.30) (the wave vector k can be
eliminated from the expression (8.30)) demonstrates the quasi-static character of the
fields within the near zone, that is, apart from a uniform and harmonic oscillation
described by e−ıωt. The radial components depend on the details of the source’s geom-
etry. The scalar and vector potentials are of the form already derived in electrostatics
(2.92) and magnetostatics (4.39).

On the other hand, in far-field zone, where kr � 1, the exponential in (8.21)
oscillates rapidly and determines the behavior of vector potential. Here, we must
resort to the complete expression (8.28), but we can expand the Hankel functions
like,

h
(1)
` (x) = (−ı)`+1 e

ıx

x

∑̀

m=0

ım

m!(2x)m
(`+m)!

(`−m)!
. (8.32)

Knowing,

h
(1)
0 (x) = −ı eıxx , P0(x) = 1

h
(1)
1 (x) = − eıxx

(
1− 1

ıx

)
, P1(x) = x .

(8.33)

we calculate the potentials,

A`=0(r) ' µ0

4π

eıkr

r

∫
j(r′)d3r′ (8.34)

A`=1(r) ' −µ0

4π
ık
eıkr

r

(
1− 1

ıkr

)∫
j(r′)r′ · êrd3r′ ,

We will see in the following sections that A`=0 is the potential for electric dipole ra-
diation and A`=1 the potential for magnetic dipole radiation and electric quadrupolar
radiation.

Example 85 (The far-field limit): Assuming that the spatial extent of the
radiation source is small, r′ . d � r, it is sufficient to approximate directly in
the expression (8.21),

|r− r′| ' r − êr · r′ .

Moreover, if only the principal term in kr is desired 3, the inverse distance in
(8.21) can be replaced by r. Then, the vector potential is,

lim
kr→∞

A(r) =
µ0

4π

eıkr

r

∫
j(r′)e−ıkêr·r

′
d3r′ .

This shows that, in the far-field zone, the vector potential behaves like a spher-
ically expanding wave modulated by an angular coefficient. It is easy to show,
that the fields calculated from (8.22) are transverse to the radius vector and fall
off as 1/r. They correspond thus to the radiation fields. If the size of the source

3The expansion by 1
kr

gives,

e−ıkêr·r
′

kr − kêr · r′
=
e−ıkêr·r

′

kr

[
êr · r′
r

+

(
êr · r′
r

)2

+ ...

]
' e−ıkêr·r

′

kr
.
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is small compared to a wavelength, it is appropriate to expand the exponential
in the integral in (8.25) in powers of k,

lim
kr→∞

A(r) =
µ0k

4π

∑
n

(−ı)n

n!

eıkr

kr

∫
j(r′)(êr · kr′)nd3r′ .

The magnitude of the n-th term is given by 1
n!

∫
j(r′)(êr · kr′)nd3r′. Since the

order of magnitude of r′ is d, and since we assumed kr′ � 1, consecutive terms

decrease rapidly with n. Consequently, the radiation emitted from the source

comes mainly from the first terms of the expansion (8.26).

8.1.2.1 The electric monopole

We notice that the lowest order radiation found in the expansion of A is dipolar. How
about monopolar fields? Let us examine the issue of electric monopole fields, when
the sources vary in time. The contribution of the electric monopole is obtained by
substituting |r− r′| → |r| = r in the integral (8.21) for the potential Φ. The result is,

Φmonopole(r, t) =
1

4πε0

eıkr

r

∫
ρ(r′)d3r′ =

Q

4πε0

eıkr

r
. (8.35)

where q(t) is the total charge of the source. Since the charge is localized in the
source (and therefore conserved), the total charge q is independent of time. Thus,
the electrical monopole part of the potential of a localized source is necessarily static.
Radiation with harmonic temporal dependence, e−ıωt, does not have monopolar terms
in the fields.

Now let us go back to multipolar fields. Since these fields can be calculated from
the vector potential via (8.23), we omit explicit references to the scalar potential in
the following.

8.1.3 Radiation of an oscillating electric dipole

Keeping only the first term in (8.30) we get the potential vector (8.33),

A(r) =
µ0

4π

eıkr

r

∫
j(r′)d3r′ . (8.36)

which is valid everywhere outside the source. Using the continuity equation we can
rewrite it, using a result from Exc. 8.1.6.1,

A(r) = −µ0

4π

eıkr

r

∫
r′(∇′ · j)d3r′ = −µ0

4π

eıkr

r
ıω

∫
r′%(r′)d3r′ . (8.37)

With the electric dipole moment,

d ≡
∫

r′%(r′)d3r′ , (8.38)

defined in electrostatics we write,

A(r) = −µ0

4π

eıkr

r
ıωd . (8.39)
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We obtain the fields via the equations (8.22),

~B = −ck
3µ0

4π
(êr × d)

eıkr

kr

(
1− 1

ıkr

)

~E =
k3

4πε0

{
(êr × d)× êr

eıkr

kr
+ [3êr(êr · d)− d]

(
1

(kr)3
− ı

(kr)2

)
eıkr

} .

(8.40)
We observe that the magnetic field is transverse to the radius vector êr at all dis-
tances, but that the electric field has components parallel and perpendicular to êr.
In Exc. 8.1.6.2 we will derive the fields (8.40) directly from the potentials.

In the radiation zone kr � 1 the fields adopt the typical behavior,

~B = −ck
3µ0

4π
(êr × d)

eıkr

kr
and ~E =

k3

4πε0
(êr × d)× êr

eıkr

kr
. (8.41)

In the near-field zone kr � 1,

~B =
ıωµ0

4π
(êr × d)

1

r2
and ~E =

1

4πε0
[3êr(êr · d)− d]

1

r3
, (8.42)

does not have the propagation term eıkr. The electric field, apart from its temporal
oscillations, is just a static electric dipole. The magnetic field is, apart from a constant
Z0 ≡

√
µ0/ε0 called vacuum impedance, smaller by a factor kr than the electric field in

the region where kr � 1. Thus, the fields in the near-field zone are of predominantly
electrical nature. The magnetic field disappears, obviously, in the static limit k → 0.
In this case, the near-field zone extends to infinity.

The Poynting vector in the far-field due to the oscillation of the dipole moment d
is, inserting (8.41),

~S =
1

2µ0

~E × ~B∗ = − ck4

32π2ε0r2
{[êr × d)× êr]× (êr × d)} (8.43)

= − ck4

32π2ε0r2
(d2 − d2

r)êr = − ck4

32π2ε0r2
êrd

2 sin2 θ .

The radiated power is given by the absolute value of (8.43) per solid angle element 4.
If the components of d all have the same phase, the angular distribution is a typical
dipole pattern,

dP

dΩ
=

c

32π2ε0
k4|d|2 sin2 θ . (8.44)

where the angle θ is measured from the direction of d. The total radiated power,
regardless of the relative phases of the components of d, is,

P =
cZ0

12πε0
|d|2 =

µ0

12πc
|d|2 , (8.45)

4When writing angular distributions of radiation, we will always exhibit the polarization explicitly
by writing the absolute square of a vector that is proportional to the electric field. If the angular
distribution of a particular polarization is desired, it can then be obtained by taking the scalar
product of the vector with the appropriate polarization vector before the square.
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which is half of the value calculated in the derivation of the Larmor formula (8.19),
because in (8.43) we choose to calculate directly the temporal average of the Poynting
vector.

Resolve the 8.1.6.3. In Exc. 8.1.6.4 we will verify the gauge of the dipolar potential
and in Exc. 8.1.6.5 we calculate the fields of a linear antenna.

x

(a)

B
φ

z

E
r

x

(b)

z

x

y

(c)

x

z

(d)

Figure 8.2: (code) Electric dipole radiation patterns. (a) Cut through ~Bφ, (b) cut through
~Er, (c) field lines of ~B in the xy-plane, and (d) field lines of ~E in the xz-plane. A movie can

be seen at (watch movie).

Example 86 (Linear antenna): As an example, we calculate the power ra-
diated by an oscillating charge %(r, t) = Qδ(x)δ(y)δ(z − z0e

−ıωt). The dipole
moment is,

d =

∫
r′%(r′, t)dV ′ = Qêzz0e

−ıωt .

Inserted into the formula (8.45),

P =
cZ0Q

2z2
0

12πε0
.

Example 87 (Linear antenna): As another example we calculate the power
radiated by a simple linear antenna, characterized by a current distribution
j(r, t) = I0êzδ(x)δ(y)(1− 2|z|/a)e−ıωt. The dipole moment is,

d =
ı

ω

∫
jdV ′ =

ı

ω
I0êze

−ıωt
∫ a/2

−a/2
jdV ′

(
1− 2|z′|

a

)
dz′ =

ıI0a

2ω
êze
−ıωt .

Inserted into the formula (8.45),

P =
Z0I

2
0 (ka)2

48π
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Radiation_DipoleRadiation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Radiation_DipoleRadiation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Radiation_DipoleRadiation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/ED_Radiation_DipoleRadiation_Movie.mp4
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8.1.4 Magnetic dipole and electric quadrupole radiation

The term ` = 1 in the expansion (8.28) leads to the second vector potential (8.34),

A(r) = −ı µ0

4π
ıkh

(1)
1

∫
j(r′)(êr·r′)d3r′ =

µ0

4π

eıkr

r

(
1

r
− ık

)∫
j(r′)(êr·r′)d3r′ . (8.46)

This vector potential can be written as the sum of two terms: one gives a transverse
magnetic field and the other gives a transverse electric field. These physically distinct
contributions can be separated by rewriting the integrand in (8.46) as the sum of a
part, which is symmetric about an exchange of j and r′, and an antisymmetric part.
Therefore,

(êr · r′)j = 1
2 [(êr · r′)j + (êr · j)r′]− êr × 1

2 (r′ × j) , (8.47)

using the rule B(AC)− C(AB). The second (antisymmetric) part is recognizable as
the magnetization due to the current j:

~M = 1
2 (r′ × j) . (8.48)

We will see, that the first (symmetric) term is related to the electric quadrupole
moment density.

8.1.4.1 Magnetic dipole radiation

Considering, for the moment, only the magnetization term, we get the vector poten-
tial,

A(r) =
ıkµ0

4π
(êr ×m)

eıkr

r

(
1− 1

ıkr

)
, (8.49)

where m is the magnetic dipole moment,

m =

∫
~Md3r = 1

2

∫
(r× j)d3r . (8.50)

The fields can be determined by observing that the vector potential (8.49) is pro-
portional to the magnetic field (8.40) of an electric dipole (except that we have to
exchange the electric by the magnetic dipole moment). Thus, we can use the calcula-
tions we already made and transfer the results to the fields of a magnetic dipole via
Eqs. (8.22):

~B =
k3µ0

4π

{
(êr ×m)× êr

eıkr

kr
+ [3êr(êr ·m)−m]

(
1

(kr)3
− ı

(kr)2

)
eıkr

}

~E = −ck
3µ0

4π
(êr ×m)

eıkr

kr

(
1− 1

ıkr

) .

(8.51)
In Exc. 8.1.6.6 we will derive the fields (8.51) directly from the potentials.
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All arguments concerning the behavior of the fields in the near-field and far-field
regions are the same as those proposed for the electric dipole radiation with the
modifications,

~E(M1) m↔cd←→ c ~B(E1) (8.52)

c ~B(M1) m↔cd←→ ~E(E1) .

Likewise, the radiation pattern and the total radiated power are the same for the
two types of dipole. The only difference in the radiation fields are their polarizations.
For an electric dipole, the electric field vector lies in the plane defined by êr and d,
whereas for a magnetic dipole, it is perpendicular to the plane defined by êr and m.

8.1.4.2 Electric quadrupole radiation

The integral of the symmetric term in (8.47) can be transformed using the continuity
equation and integrating by parts:

1
2

∫
[(êr · r′)j + (êr · j)r′]d3r′ = − ıω2

∫
r′(êr · r′)%(r′)d3r′ . (8.53)

This will be demonstrated in Exc. 8.1.6.1. Since this integral involves the second
moments of charge density, it corresponds to a quadrupolar electric radiation source.
The potential vector is,

A(r) = −µ0ck
2

8π

eıkr

r

(
1− 1

ıkr

)∫
r′(êr · r′)%(r′)d3r′ . (8.54)

The expressions for the fields are a bit complicated, such that we focus on the radiation
zone, where it is easy to verify that,

~B = ∇×A = ıkêr ×A , ~E = ıck(êr ×A)× êr . (8.55)

Consequently, the magnetic field is,

~B = − ıck
3µ0

8π

eıkr

r

∫
(êr × r′)(êr · r′)%(r′)d3re′ . (8.56)

With the definition of the tensor of the quadrupolar moment,

Qαβ ≡
∫

(3xαxβ − r2δαβ)%(r′)d3r′ , (8.57)

the integral (8.56) can be written as,

êr ×
∫

r′(êr · r′)%(r′)d3r′ = 1
3 êr ×Q(êr) , (8.58)

where the vector Q(êr) is defined via its components,

Qα =
∑

αβ

Qαβ êβ . (8.59)
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We note that its magnitude and direction depend on the direction of observation as
well as on the properties of the source. With these definitions, we get the magnetic
field,

~B = − ıck
3µ0

24π

eıkr

r
êr ×Q(êr) , (8.60)

and the time-averaged power radiated into a solid angle,

dP

dΩ
=

c2Z0

1152π2
k6|[êr ×Q(êr)]× êr|2 . (8.61)

The final expressions are complicated [48], but for the example of a ellipsoidal
charge distribution periodically changing its ’aspect ratio’, it is possible to show that
the angular distribution of the radiation pattern exhibits four lobes,

dP

dΩ
=
c2Z0k

6

512π2
Q2

0 sin2 θ cos2 θ , (8.62)

and the total radiated power is,

P =
c2Z0k

6

960π
Q2

0 . (8.63)

For multipoles of higher order the formulas become more and more complicated.
Other techniques based on the multipolar expansion of the wave equation, rather
than deriving the radiation patterns directly from the retarded potentials, are more
suitable. Resolve the Exc. 8.1.6.7.

8.1.5 Multipolar expansion of the wave equation

The radiation from sources which are small in comparison with the observation dis-
tance exhibits a symmetry suggesting a reformulation of the wave equation in spherical
coordinates, as we have already done in Sec. 2.6.3. In short, we consider a scalar field
ψ(r, t) satisfying the wave equation,

∇2ψ − 1

c2
∂2ψ

∂t2
= 0 . (8.64)

The temporal dependency is separated by a Fourier transform,

ψ(r, t) =

∫ ∞

−∞
φ(r, ω)e−ıωtdω , (8.65)

yielding a distribution of the amplitudes which satisfying the Poisson equation,

(∇2 + k2)φ(r, ω) = 0 , (8.66)

with ω2 = c2k2. Expanding into spherical harmonics by the ansatz,

φ(r, ω) =
∑

`,m

f`(r)Y`,m(θ, φ) , (8.67)
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we transform (8.66), where the Laplacian is expressed in spherical coordinates, into
a differential equation which is independent of m,

[
d2

dr2
+

2

r

d

dr
+ k2 − `(`+ 1)

r2

]
f`(r) = 0 . (8.68)

This equation is precisely the spherical Bessel equation, whose solutions are linear
combinations of spherical Bessel and von Neumann functions,

A`j`(kr) +B`n`(kr) . (8.69)

With respect to the spherical part, we note that the spherical harmonics are the
eigenfunctions of the square of an angular momentum operator L̂, which can be
identified with the angular part of the Laplacian in spherical coordinates,

L̂2 = −
[

1

sin θ

∂

∂ sin θ

(
sin θ

∂

∂ sin θ

)
+

1

sin2 θ

∂

∂φ

]
, (8.70)

and has as eigenvalues the integer numbers `(`+ 1),

L̂2Y`m = `(`+ 1)Y`m . (8.71)

The Lie algebra ruling the calculation with angular momentum operators will not be
reproduced here 5.

Clearly, the simplicity of the multipolar expansion of the wave equation (8.64) into
spherical coordinates is due to its scalar nature, and a similar procedure is used to
solve the scalar Schrödinger equation for the hydrogen atom. Electromagnetic fields,
however, are vectorial which complicates the calculus, as we will see in the following.

8.1.5.1 Multipolar expansion of the fields

Assuming a time dependence as e−ıωt and combining the Maxwell equations for the
field rotations to derive the Helmholtz equation, we obtain a set of equations, which
is equivalent to the Maxwell equations,

(∇2 + k2) ~B = 0 and ∇ · ~B = 0 with ~E = ı
c

k
∇× ~B , (8.72)

or alternatively,

(∇2 + k2)~E = 0 and ∇ · ~E = 0 with ~B = ı
1

ck
∇× ~E . (8.73)

Now, we have for any well-behaved vector field X,

∇2(r ·X) = r · (∇2X) + 2∇ ·X . (8.74)

Applying this relation to the electromagnetic fields, we find,

(∇2 + k2)(r · ~B) = 0 and (∇2 + k2)(r · ~E) = 0 . (8.75)

5See the treatment of spherical potentials in the script Quantum Mechanics by the same author
Scripts/QuantumMechanicsScript .
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The transverse magnetic field and the transverse electric field can be rewritten by
the rotation of the equations (8.72) respectively (8.73),

r · ~B = ı
ckr · (∇× ~E) = ı

ck (r×∇) · ~E ≡ 1
ckL · ~E

r · ~E = ıc
k r · (∇× ~B) = ıc

k (r×∇) · ~B ≡ c
kL · ~B

, (8.76)

defining in this way the operator for the orbital angular momentum L.
These scalar fields can now be expanded as demonstrated in (8.67) and (8.69).

That is, we can expand the transverse parts of electric and magnetic fields into mag-
netic (electric) multipoles as,

r · ~B(M)
`m = `(`+1)

k g`(kr)Y`m(θ, φ) = 1
ckL · ~E(M)

`m and r · ~E(M)
`m = 0

r · ~E(E)
`m = −Z0

`(`+1)
k f`(kr)Y`m(θ, φ) = c

kL · ~B(E)
`m and r · ~B(E)

`m = 0

.

(8.77)
where g` is a linear combination of Bessel and Hankel functions and `(` + 1)/k a
convenient normalization factor.

We can see (by simplifying the argument a bit) that, by comparing (8.77) with

the equation (8.71) the field ~E(M) must contain the operator L,

~E(M) = cg`(kr)LY`m(θ, φ) with ~B(M) = − ı
ck∇× ~E(M)

`m

~B(E) = µ0g`(kr)LY`m(θ, φ) with ~E(E) = − ıck∇× ~B(E)
`m

. (8.78)

The functions,

X`m(θ, φ) =
1√

`(`+ 1)
LY`m(θ, φ) , (8.79)

are known as vector spherical harmonics. Combining the expansions into electric and
magnetic multipoles we obtain,

~B =
∑

`m

[
a

(E)
`,mf`(kr)X`,m − ı

ka
(M)
`,m∇× g`(kr)X`m

]
(8.80)

~E =
∑

`m

[
ı
ka

(E)
`,m∇× f`(kr)X`,m − a(M)

`,m g`(kr)X`m

]
.

The coefficients can be determined from the radial projections of the fields.

8.1.5.2 Vector spherical harmonics

The vector spherical harmonics defined above are a particular case of those defined
for the coupling of two spins L and S with S = 1 in the following sense,

Yj`m =
∑

q


 J 1 L

−m q m− q


Y

(`)
m−qêq , (8.81)
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where the basis is in Cartesian coordinates,

ê0 = êz and ê± = − 1√
2
(êx ± ıêy) . (8.82)

These functions are tensor operators of rank (1, `), since Yj`m = (Y (`) ⊗ ê(1))
(j)
m .

This means they have vectorial properties via ê
(1)
q and, at the same time, are tensor

operators just like the spherical harmonics Y
(`)
m . It is possible to check the following

expressions,

J2Yj`m = j(j + 1)Yj`m (8.83)

L2Yj`m = `(`+ 1)Yj`m

S2Yj`m = 2Yj`m

JzYj`m = mYj`m .

Furthermore, comparing (8.83) and (8.79),

L√
`(`+ 1)

Y (`)
m = −ıY``m = X`m (8.84)

r

r
Y (`)
m = ı

√
`+ 1

2`+ 1
Y` `+1 m − ı

√
l

2`+ 1
Y` `−1 m

0 = r ·Y``m = p ·Y``m .

In 8.1.6.8 we calculate the following examples, Y000 = 0 and,

rY110 =
√

3
16π


−ıy

ıx

0

 , rY11±1 =
√

3
16π


z

±ı

−(x± ıy)

 , rY10±1 = −
√

1
24π


x

±ıy

0

 .

(8.85)

Also,

Y2
κκm = [κ(κ+1)−m(m+1)]|Yκ m+1|2+2m2|Yκ m|2+[κ(κ+1)−m(m−1)]|Yκ m−1|2 .

(8.86)
Applying the formulas [101](Chp. 10.1) to scalar and vector products of vector

spherical harmonics, it is possible to derive the energy density ε0
2
~E2
jmτ + 1

2µ0

~B2
jmτ and

the Poynting vector ε0|~Ejmτ× ~Bjmτ |. The calculation is complicated, because we must
calculate (3j), {6j}, and {9j} coefficients. Considering that the angular distribution
is the same for electric and magnetic multipolar radiation, we obtain,

ujmτ (r) =
1

2µ0

~B2
jmτ (r) = − ~ω

4V

(
j + 1

2j + 1

)2
(kr)2j

(2j + 1)!!2
Y2
jjm , (8.87)

The question now is, with what polarization ε and under what angle of incidence k
can we excite a particular multipolar transition. The transition can only be excited by
a mode, to which it couples and, therefore, into which it can radiate light. Therefore, it
is sufficient to analyze the angular distribution and the polarization of spontaneously



340 CHAPTER 8. RADIATION

emitted radiation. In the far-field of a point source the electric and magnetic fields
satisfy the Helmholtz equation [101],

(4+ k2)~E(r, t) = 0 , (8.88)

and similarly for the magnetic field ~B(r, t). An atomic transition |J,mJ〉 ↔ |J +
κ,mJ +m〉 interacts with the electric or magnetic multipolar part κ of the radiation
field. The general solution of the Helmholtz equation, therefore, is expanded into
spherical harmonics Yκm(θ, φ):

~E =

∞∑

κ=0

κ∑

m=−κ

(
~E(Eκ)
m + ~E(Mκ)

m

)
(8.89)

and similarly for the magnetic field. The angular distributions of the multipolar
electric field components are calculated by,

~E(Eκ)
m = −ık−1∇× ~B(Eκ)

m (8.90)

~B(Eκ)
m = −ı (k×∇)Yκm(θ, φ) ≡

√
κ(κ+ 1)Yκκm(θ, φ) , (8.91)

and similarly for the magnetic field. The field components can be expressed by the
vector spherical harmonics Yκκm. The angular distribution of the radiated intensity
follows from the absolute value of the Poynting vector,

I(Eκ)
m (r) = µ−1

0

∣∣∣~E(Eκ)
m (r)× ~B(Eκ)

m (r)
∣∣∣ = µ−1

0

∣∣∣ ~B(Eκ)
m (r)

∣∣∣
2

∝ Yκκm(θ, φ)2 . (8.92)

The multipolar order of a radiation can, in principle, be determined by mea-
suring its angular distribution. The above distribution integrate over all possible
polarizations. If polarized light is used, in order to excite transitions between se-
lected Zeeman levels, the angular intensity distribution of polarized radiation must
be calculated. The transition rate between two levels |a〉 and |b〉 for light incident

from a given direction r with a given polarization ε̂ is, |〈b|ε̂~E(Eκ)
m (r)|a〉|2, where

~E(Eκ)
m (r) = −ık−1∇ × ~B(Eκ)

m (r). The cases of linear polar polarization (respectively
axial) of the light field in relation to the quantization axis are expressed by the frac-
tions ε̂polar · Yκκm, respectively, ε̂axial · Yκκm, the absolute square values of which
add up to the angular intensity distribution,

u10 ∼ 4|Y (1)
1 |2 = 3

4π
2 sin2 θ

u1±1 ∼ 2|Y (1)
1 |2 + 2|Y (1)

0 |2 = 3
4π

(1 + cos2)

u20 ∼ 12|Y (2)
1 |2 = 5

4π
18 sin2 cos2

u2±1 ∼ 4|Y (2)
2 |2 + 2|Y (2)

1 |2 + 6|Y (2)
0 |2 = 5

4π
3(4 cos2−3 cos2 +1)

u2±2 ∼ 8|Y (2)
2 |2 + 4|Y (2)

1 |2 = 5
4π

3 sin2(1 + cos2)

u30 ∼ 24|Y (3)
1 |2 = 7

4π
9
2

sin2(5 cos2−1)2

u3±1 ∼ 10|Y (3)
2 |2 + 2|Y (3)

1 |2 + 12|Y (3)
0 |2 = 7

4π
3
8
(225 cos6−305 cos4 +111 cos2 +1)

u3±2 ∼ 6|Y (3)
3 |2 + 8|Y (3)

2 |2 + 10|Y (3)
1 |2 = 7

4π
15
4

sin2(9 cos4−2 cos2 +1)

u3±3 ∼ 18|Y (3)
3 |2 + 6|Y (3)

2 |2 = 7
4π

45
8

sin4(1 + cos2) .

(8.93)



8.1. MULTIPOLAR EXPANSION OF THE RADIATION 341

Figure 8.3: (code) Angular dependence of dipolar radiation u1m (left), quadrupolar u2m

(center) and u3m octupolar (right) with their respective contributions m = 0 (blue), m = ±1

(red), m = ±2 (yellow) and m = ±3 (magenta).

In the equatorial plane, only the parts uj±1 contribute; but these disappear in po-
lar direction. All other components lie in the equatorial plane. For non-polarized
radiation the angular distribution is uniform,

j∑

m=−j
ujm ∼ 2j+1

4π 2(j + 1)! . (8.94)

8.1.6 Exercises

8.1.6.1 Ex: Relationship between current density and electric dipole
moment

a. For a charge and current configuration contained in a volume V show that,
∫
V jdV =

dd
dt , where d is the total dipolar moment.
b. Demonstrate the relationship,

∫
r′(êr·r′)%̇(r′)d3r′ =

∫
{j(r′)(êr · r′) + r′[êr · j(r′)]} d3r′.

8.1.6.2 Ex: Hertz dipole

A Hertz dipole with vertical orientation is in the focus of a parabolic antenna PA1 and
emits electromagnetic radiation with a frequency of 3 GHz. The shape of the antenna
is such that the electromagnetic radiation is reflected forming a ’parallel’ beam with
diameter d = 3 m. The electric field within the beam can be roughly described by the
following formula:

~E1(r, t) = ~E0 cos(k1 · r− ωt) êz where k1 = −kêx sinα+ kêy cosα .

a. Determine the parameter k using the wave equation.
b. What is the amplitude ~E0 of the electric field assuming that the parabolic antenna
emits a power of 5 W?
c. There is a second Hertz dipole, acting as a detector, oriented orthogonal to k1. The
maximum amplitude of the electric field detected by D2 is around 0.1 V/m. Estimate
the angle of the orientation of the dipole with respect to the vertical axis (without
calculation, but with a short justification).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Radiation_MultipoleRadiation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Radiation_MultipoleRadiation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Radiation_MultipoleRadiation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_RadArbitraria01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_RadArbitraria01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_RadDipolar01.pdf
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d. Now, the emitter dipole D1 is also rotated in such a way that, regardless of the
orientation of the dipole D2, it does not receive signals. What is the orientation of
the dipole emitter? Give a short justification.
e. The dipole emitter is again oriented vertically. Another parabolic antenna PA2,
identical to PA1, is now integrated into the experiment, as shown in the figure. Cal-
culate the power density S on the axis x in the time average. (α = 5◦)
Help: Addition theorems:

cos(α± β) = cosα cosβ ∓ sinα sinβ and cos 2α = cos2 α− sin2 α

Figure 8.4: Hertz dipole.

8.1.6.3 Ex: Dipolar spherical waves

We derived in class, starting from the relations ~B = ∇ × A and ~E = ıc
k∇ × ~B, the

expressions (8.40) for the magnetic and electric fields of a electric dipole radiation
produced by the dipole moment d = dêz.
a. Show that the magnetic field can be expressed in the form ~B = ~Bφ(r, θ)êφ.

b. Show that the electric field can be expressed in the form ~E = ~Er(r, θ)êr+ ~Eθ(r, θ)êθ.
c. The purpose of this exercise is to check in spherical coordinates, where the diver-
gence and rotation are given by (1.79) and (1.80), that these fields satisfy Maxwell’s
equations.

8.1.6.4 Ex: Gauges of dipolar potentials

Verify that the retarded potentials of an oscillating dipole,

Φ(r, θ, t) =
p0 cos θ

4πε0r

{
−ω
c

sin[ω(t− r/c)] +
1

r
cos[ω(t− r/c)]

}

A(r, θ, t) = −µ0p0ω

4πr
sin[ω(t− r/c)]êz ,

satisfy the Lorentz gauge.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_RadDipolar02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_RadDipolar03.pdf
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8.1.6.5 Ex: Electric and magnetic fields of an oscillating electric dipole

Calculate the electric and magnetic fields of an oscillating electric dipole in the dipolar
approximation (kr′ � 1) but for arbitrary distances (kr ≶ 1) directly from the
retarded potentials in spherical coordinates. Find the Poynting vector and show that
the radiation intensity is exactly the same, as the one derived within the far-field
approximation (kr � 1).

8.1.6.6 Ex: Electric and magnetic fields of an oscillating magnetic dipole

Calculate the electric and magnetic fields of an oscillating magnetic dipole in the dipo-
lar approximation (kr′ � 1), but for arbitrary distances (kr ≶ 1) directly from the
retarded potentials in spherical coordinates. Compare with the fields of an oscillating
electric dipole. Find the Poynting vector and show that the intensity of the radiation
is exactly the same, as the one derived within the far-field approximation (kr � 1).

8.1.6.7 Ex: Spherical harmonics

The spherical harmonic function for ` = 2 and m = 1 has the form,

Y21(ϑ, ϕ) =
√

15
8π sinϑ cosϑ(cosϕ+ ı sinϕ) .

Express the quadrupolar momentum q21 as a linear combination in Cartesian coordi-
nates,

Qij =

∫
ρ(r)(3xixj − δijr2) dr3 .

8.1.6.8 Ex: Vector spherical harmonics

Calculate the angular distribution of E1 and M1 radiation.

8.2 Radiation of point charges

The fundamental structure of matter is based on electromagnetic forces: Electrons
are bound to nuclei by the Coulomb-Lorentz force, the orbital motion of the electrons
produces magnetic fields, which can interact with the intrinsic spins of electrons and
nuclei, external electromagnetic fields can influence the motion of electrons. There-
fore, it is of primary interest to understand the radiation emitted by accelerated
point-like electric charges.

8.2.1 Power radiated by an accelerated point charge

We derived in an earlier chapter the fields (6.140) and (6.141) produced by an arbitrary
moving charge,

~E(r, t) =
q

4πε0

R

(R · u)3
[(c2 − v2)u + R× (u× a)] (8.95)

~B(r, t) = 1
cR× ~E(r, t) ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_RadDipolar04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_MagDipolar01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_RadQuadrupolar01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_VectorHarmonics01.pdf
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with u = cêr − v. We call the first term in (8.95) velocity field and the second
acceleration field. The Poynting vector is,

~S = 1
µ0

(~E × ~B) = 1
µ0c

[~E × (R× ~E)] = 1
µ0c

[E2êr − (êr · ~E)~E ] . (8.96)

However, not all of this energy flow constitutes radiation; part of it is field energy
transported by the particle as it moves. The radiated energy is the part that separates
from the charge and propagates to infinity. To calculate the total power radiated by
the particle at time tr we draw a large sphere of radius R, centered on the position
of the particle at time tr, we wait for the appropriate interval,

t− tr ≡
R

c
, (8.97)

for the radiation to reach the sphere and, at that moment, we integrate the Poynting
vector on the surface. The notation tr points to the fact, that this is the retarded
time for all points on the sphere at time t. Now, the area of the sphere is proportional
to R2, hence any term in ~S that goes like 1/R2 will produce a finite response, but
terms like 1/R3 or 1/R4 will not contribute in the limit R → ∞. For this reason,
only the acceleration field truly radiates:

~Erad =
q

4πε0

R

(R · u)3
[R× (u× a)] . (8.98)

Since ~Erad ⊥ R, the second term in Eq. (8.96) disappears:

~Srad =
1

µ0c
~E2
radêr . (8.99)

Example 88 (Radiation at the turning point): If at time tr the charge
is instantaneously at rest, v(tr) = 0, for example at the turning points of a
harmonic oscillation, then u = cêr, and,

~Erad =
q

4πε0c2R
[êr × (êr × a)] =

µ0q

4πR
[(êr · a)êr − a] . (8.100)

In this case,

~Srad =
1

µ0c

( µ0q

4πR

)2

[a2 − (êr · a)2]êr =
µ0q

2a2

16π2c

sin2 θ

R2
, (8.101)

where θ is the angle between êr and a. No power is radiated in forward or
backward directions. Instead, it is emitted in a torus around the instantaneous
acceleration, as shown in Fig. 8.5(a).
The total radiated power is evidently,

P =

∮
~Srad · dS =

µ0q
2a2

16π2c

∫
sin2 θ

R2
R2 sin θdθdφ =

µ0q
2a2

6πc
. (8.102)

This, again, is the Larmor formula, which we previously obtained via another

route (8.19). Although derived under the assumption that v = 0, the equations

(8.101) and (8.102) represent a good approximation, since v � c.
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An exact treatment of the case v 6= 0 is more difficult for two reasons. The first
obvious reason is, that ~Erad is more complicated, and the second more subtle reason
is that ~Srad, which is the rate at which energy passes through the sphere, is not equal
to the rate at which the energy separated from the particle. Suppose someone is
throwing a stream of bullets through the window of a moving car. The rate Nt at
which the bullets hit a stationary target is not the same as the rate Ng at which they
left the weapon, because of the movement of the car. In fact, we can easily verify
that Ng = (1− v/c)Nt, if the car is moving toward the target, and,

Ng =
(
1− êr·v

c

)
Nt (8.103)

for arbitrary directions (here v is the speed of the car, c is the velocity of the bullets,
and R is a unit vector pointing from the car towards the target). In our case, if
dW/dt is the rate at which energy passes through the sphere of radius R, then the
rate at which the energy separated from the charge was,

dW

dtr
=
dW/dt

∂tr/∂t
. (8.104)

We calculate the denominator from the relation (8.97),

∂tr
∂t

= 1− ∂
√

[r−w(tr)]2

c∂t
= 1− −2[r−w(tr)]

2c
√

[r−w(tr)]2
· ∂w(tr)

∂tr

∂tr
∂t

(8.105)

= 1 +
R

cR
· v∂tr

∂t
=

1

1− êR · v/c
=

cR

R · u .

This factor is precisely that of the relation (8.103) between Ng and Nt; is a purely
geometric factor (the same as in the Doppler effect).

Therefore, the power radiated by the particle into an area element, R2 sin θdθdφ =
R2dΩ of the sphere is, using the Poynting vector (8.99) and the radiated field (8.98),
given by,

dP

dΩ
=

~Srad

∂tr/∂t
=

R · u
Rc

1

µ0c
~E2
radR

2 =
q2

16π2ε0

|êr × (u× a)|2
(êr · u)5

, (8.106)

where dΩ = sin θdθdφ is the solid angle at which this energy is radiated. Integrating
over θ and φ to obtain the total radiated power is not easy, such that we simply quote
the answer:

P =
µ0q

2γ6

6πc

(
a2 −

∣∣∣∣
v × a

c

∣∣∣∣
2
)

, (8.107)

where γ ≡ 1/
√

1− v2/c2. This is Liénard’s generalization of Larmor’s formula, to
which it reduces when v � c. The factor γ6 means that the radiated power increases
enormously as the velocity of the particle approaches the speed of light.

Resolve the Excs. 8.2.3.1 to 8.2.3.5.
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8.2.1.1 Bremsstrahlung

Suppose that v and a be instantaneously collinear (at time tr), such as for a motion
on a straight line. In this case u× a = (cêr − v 0)× a, then the angular distribution
of radiation (8.106) gives,

dP

dΩ
=

q2c2

16π2ε0

|êr × (êr × a)|2
(c− êr · v)5

. (8.108)

Now with |êr × (êr × a)| = a sin θ and letting v ≡ vêz,

dP

dΩ
=
µ0q

2a2

16π2c

sin2 θ

(1− β cos θ)5
, (8.109)

where β ≡ v/c. This is consistent with the result (8.101), in the case v = 0. However,
for very large v (β ≈ 1), the torus of the radiation illustrated in Fig. 8.5(a) is stretched
and pushed forward by a factor (1− β cos θ)−5, as indicated in Fig. 8.5(b). Although
there is still no radiation in the exact forward direction, most of the radiation is
concentrated in an increasingly narrow cone around the forward direction.

Figure 8.5: (code) (a) Radiation pattern of an accelerated charge. (b) Angular distribution

of the bremsstrahlung.

The total emitted power is found by integrating equation (8.110) over all angles:

P =

∫
dP

dΩ
dΩ =

µ0q
2a2

16π2c

∫
sin2 θ

(1− β cos θ)5
sin θdθdφ (8.110)

=
µ0q

2a2

8πc

∫ +1

−1

1− x2

(1− βx)5
dx =

µ0q
2a2

8πc
4
3 (1− β2)−3 =

µ0q
2a2γ6

6πc
.

This result is consistent with the Liénard’s formula (8.107), for the case when v
and a are collinear. Note that the angular distribution of radiation is the same,
whether the particle is accelerating or decelerating; it does not depend on a, but only
on velocity being concentrated in forward direction (with respect to the velocity) in
both cases. When a high-speed electron hits a metal target, it decelerates rapidly,
releasing what is called bremsstrahlung. This example is essentially the classical
theory of bremsstrahlung.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Radiation_Bremsstrahlung.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Radiation_Bremsstrahlung.m
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We will calculate the synchrotron radiation in Exc. 8.2.3.6 and the Cherenkov ra-
diation in Exc. 8.2.3.7. A movie illustrating the Cherenkov radiation emission can be
viewed at (watch movie).

Example 89 (Bremsstrahlung of thermal electrons): The power lost by
bremsstrahlung for not extremely relativistic velocities is,

P =
µ0q

2a2γ2

6πc
' µ0q

2a2

6πc
,

such that,

~Erad =

∫ t

0

Pdt =
µ0q

2a2

6πc

∫ 0

v0

dv

v̇
=
µ0q

2a

6πc

∫ 0

v0

dv =
µ0q

2a

6πc
v0 .

For an electron in a metal with a free path of d ≈ 3 nm and a thermal velocity

v0 = 100000 m/s the deceleration a =
v20
2d

leads to a negligible radiated fraction,

~Erad

Ekin
=

µ0q
2a

6πc
v0

m
2
v2

0

=
µ0q

2a

3πcmv0
=

µ0q
2

3πcm

v0

2d
≈ 2 · 10−10 .

8.2.2 Radiation reaction

According to the laws of classical electrodynamics, an accelerated charge radiates.
This radiation takes energy, which must come at the expense of the particle’s kinetic
energy. Under the influence of a given force, therefore, a charged particle accelerates
less than a neutral particle of the same mass. The radiation evidently exerts a reactive
force Frad corresponding to a recoil. We will now derive the radiation reaction force
from energy conservation.

For a non-relativistic particle (v � c), the total radiated power P is given by the
Larmor formula (8.102). The conservation of energy suggests that this is also the rate
at which the particle loses energy, under the influence of the radiative reaction force
Frad:

Frad · v ?
= −µ0q

2a2

6πc
= −P . (8.111)

However, this equation is really wrong. For, to derive Larmor’s formula, we calculated
the radiated power by integrating the Poynting vector on a sphere of ’infinite’ radius;
in this calculation the velocity fields did not contribute, since they fall off very rapidly
as a function of R. However, the velocity fields carry energy; they simply do not
carry it to infinity. As the particle accelerates and decelerates, it exchanges energy
with the velocity fields, while another part of the energy is irremediably radiated
away by the acceleration fields. The equation (8.111) only takes into account this lost
energy, but if we want to know the recoil force exerted by the fields on the charge,
we must consider the power lost at each instant of time, not only the radiatively
escaping power. (In this sense the term ’radiation reaction’ is misleading and should
be replaced by ’field reaction’.) In fact, we shall see shortly that Frad is determined
by the time derivative of the acceleration and can be nonzero, even if the acceleration
is instantaneously zero, such that the particle does not radiate.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/ED_Radiation_Cherenkov_Movie.mp4
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The energy lost by the particle during a given time interval, therefore, must equal
the energy carried away by radiation plus the extra energy that has been pumped
into the velocity fields. However, if we agree to consider only time intervals [t1, t2]
over which the system returns to its initial state, then the energy in the velocity fields
is the same at both times, and the only loss is through radiation. Thus, equation
(8.111), while instantly incorrect, is valid on average:

∫ t2

t1

Frad · vdt = −µ0q
2

6πc

∫ t2

t1

a2dt , (8.112)

with the stipulation that the state of the system is identical at times t1 and t2. In the
case of periodic movements, for example, we must integrate over a total number of
complete cycles. Now, the right-hand side of the equation (8.112) can be integrated
by parts: ∫ t2

t1

a2dt = v · dv
dt

∣∣∣∣
t2

t1

−
∫ t2

t1

d2v

dt2
· vdt . (8.113)

The boundary term cancels, since the velocities and accelerations are identical at t1
and t2, then the equation (8.112) can be written in an equivalent way as,

∫ t2

t1

(
Frad −

µ0q
2

6πc
ȧ

)
· vdt = 0 . (8.114)

This equation will certainly be satisfied if,

Frad =
µ0q

2

6πc
ȧ . (8.115)

This is the Abraham-Lorentz formula for the radiation reaction force. Obviously, the
equation (8.114) does not prove (8.115), because it does not say anything about the
component of Frad perpendicular to v; and only informs us on the time-average of
the parallel component for, moreover, very special time intervals.

The Abraham-Lorentz formula has disturbing implications, which are not fully
understood nearly a century after the law was first proposed. Let us assume that a
particle is not subject to external forces; then Newton’s second law tells us,

Frad =
µ0q

2

6πc
ȧ = ma , (8.116)

yielding,

a(t) = a0e
t/τ with τ =

µ0q
2

6πmc
. (8.117)

In the case of an electron, τ = 6 · 10−24 s. The acceleration increases spontaneously
exponentially with time! This absurd conclusion can be avoided, if we insist that
a0 = 0. But it turns out, that the systematic exclusion of such catastrophic solutions
has an even more unpleasant consequence: if we now switch on an external force, the
particle begins to respond to it before it actually has been switch on (see Exc. 8.2.3.8
and 8.2.3.9).
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Example 90 (Radiative damping): Here, we calculate the radiative damping
rate τ of a charged particle fixed to a spring by solving the equation of motion,

mẍ = Fsprng + Frad + Fexcit = −mω2
0x+mτ

...
x + Fexcit .

With the oscillating system, x(t) = x0 cos(ωt+ δ), we have,

...
x = −ω2ẋ .

Therefore,

mẍ+mω2τ ẋ+mω2
0x = Fexcit ,

and the damping factor is given by ω2τ .

Example 91 (Radiation reaction): In previous chapters, the problems of
electrodynamics were divided into two classes: one class in which the charge
and current sources are specified and the resulting electromagnetic fields are
calculated, and the other class in which external electromagnetic fields are spec-
ified and the motion of charged particles of currents are calculated. Occasionally,
as in the discussion of the bremsstrahlung, the two problems are combined. But
the treatment is recursive: first, the motion of a charged particle in an external
field is determined neglecting the radiation it emits; then the radiation of the
particle is calculated from its (accelerated) trajectory treating the particle as a
source of charge and current.
Obviously, this way of dealing with electrodynamical problems can only be ap-
proximate. The (accelerated) motion of charged particles within force fields
necessarily involves the emission of radiation, removing energy, angular momen-
tum, and momentum from the particles and thus influencing their subsequent
motion. Consequently, the motion of radiation sources is (partially) determined
by the emission of radiation, and a correct treatment must take account of the
reaction of the radiation onto the motion of the sources. Fortunately, for many
problems of electrodynamics the radiative reaction is negligibly small. On the
other hand, there exists no completely satisfactory classical treatment. The dif-
ficulties presented by this problem touch upon fundamental aspects of physics,
such as the nature of elementary particles. Nevertheless, there are viable partial
solutions with limited regimes of validity. In quantum mechanics, the introduc-
tion of renormalization techniques was able to solve the divergences within the
theory of quantum electrodynamics (QED).
In order to give a gross idea of ’radiative reaction’, let us consider a charge q
of a point particle distributed in space. For simplicity we choose ’sub-charges’
q
2

located at two positions d1,2 = ± d
2
êy and moving in an accelerated way in

x-direction, that is, a = aêx. Only after the calculations will we go to the limit
d → 0. So with (6.140) we obtain for the electric field generated by the charge
2 at the place of the charge 1,

~E1(r, t) =
q/2

4πε0

R

(R · u)3
[(c2 − v2)u + R× (u× a)]

=
q/2

4πε0

R

(R · u)3
[(c2 − v2 + R · a)u− a(R · u)] .

Now, we assume that the charge be instantly at rest, v = 0, that is, u ≡
cêr − v = cêr. In Cartesian coordinates, R ≡ lêx + dêy, where l ≡ x(t)− x(tr)
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is the distance between the actual position and the retarded position, we can
write the x-component of the electric field as,

~Ex,1 =
q/2

4πε0

R

c3R3
[(c2 + R · a)ux − (R · u)ax] =

q

8πε0c2
c2l − d2a
√
l2 + d2

3 .

By symmetry, ~Ex,1 = ~Ex,2, such that the force on the dumbbell is,

Fself =
q

2
(~E1 + ~E2) =

q

8πε0c2
c2l − d2a
√
l2 + d2

3 êx .

Now, we expand l in terms of the retarded time,

l = x(tr + T )− x(tr) = vT
0

+ 1
2
aT 2 + 1

6
ȧT 3 + ... ,

such that,

d =
√

(cT )2 − l2 = cT

√
1−

(
aT
2c

+ ȧT2

6c
+ ...

)2

= cT−a
2

8c
T 3+... ' cT−a

2

8c

(
d

c

)3

+... ,

where we replaced, in the last step, the first order solution in the expansion,
T ' d/c, for the third order. Resolving by T ,

T ' d

c
+
a2d3

8c5
.

and inserting into the expansion of l,

l ' 1

2
a

(
d

c
+
a2d3

8c5

)2

+
1

6
ȧ

(
d

c
+
a2d3

8c5

)3

+ ... ' 1

2
a

(
d

c

)2

+
1

6
ȧ

(
d

c

)3

.

With this we obtain for reaction force,

Fself '
q

8πε0c2
c2l − d2a
√
l2 + d2

3 êx '
q

8πε0c2

c2
(

1
2
a
(
d
c

)2
+ 1

6
ȧ
(
d
c

)3)− d2a√
(..)d4 + d2

3 êx

' q

4πε0c2

(
− a

4d
+

ȧ

12c

)
êx ,

considering that d is small. The acceleration is still expressed in terms of the
retarded time, but this is easily remedied by,

a(tr) = a(t) + ȧ(t)(t− tr) = a(t)− ȧ(t)
d

c
.

Inserting into the force,

Fself '
q

4πε0c2

(
− a

4d
+

ȧ

12c

)
êx =

q

4πε0

(
− a(t)

4c2d
− −ȧ(t)

4c3
+
ȧ(t)

12c3

)
êx

=
q

4πε0

(
a(t)

4c2d
+
ȧ(t)

3c3

)
êx .

Finally,

F = mtota+ Frad =

(
m0 +

1

4πε0

q2

4dc2

)
a +

µ0q
2ȧ

12πc
,

where m0 is the sum of the two partial masses. We retrieve the Abraham-

Lorentz formula by the second term. The missing factor of 2, when compared

to (8.116), comes from the fact that we only consider the mutual reactions of

partial charges. The expression in the parentheses corresponds to a correction

of the inertial mass of the particle due to the Coulombian repulsion between the

charges.
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8.2.3 Exercises

8.2.3.1 Ex: Radiation emitted by a rotating electron

A particle with charge q moves with constant angular velocity ω in a circular orbit
with radius R around the origin in the plane x-y. Its trajectory therefore is,

R′(t) = R(ê′x cosωt+ ê′y sinωt) .

a. Calculate the associated (temporary) charge density %(r′, t) and the dipole moment
using the general rule,

d(t) =

∫
r′%(r′, t)d3r′ .

b. The rotating particle can be seen as a source of radiation. At a point r far from this
source, in the dipole approximation, the associated electromagnetic fields are given
by,

~B = µ0

4πcr êr × d̈ respectively ~E = c ~B × êr .

Calculate the Poynting vector,
~S = 1

µ0

~E × ~B

as well as its component Sn ≡ êr · ~S in the direction of the point r. Help: Use the
formula a× b× c = b(a · c)− c(a · b).
c. Now calculate the time average of Sn over an orbit of the particle, that is, calculate
S̄n =

∫
dtSn /

∫
dt with the two integrals taken between t = 0 and t = 2π/ω. Express

the result in spherical coordinates, so that r2S̄n is precisely the average power radiated
to the solid angle element dΩ in the direction r. Now integrate over the entire solid
angle and evaluate the total emitted power P .

8.2.3.2 Ex: Rutherford’s atom model

In Rutherford’s ’classical’ atom model a hydrogen atom is described by an electron
(charge −e) orbiting a nucleus (charge +e) in a circular trajectory with constant
angular velocity ω. The equilibrium condition is chosen so that the Coulomb force and
the centrifugal force compensate each other. However, according to the Exc. 8.2.3.1,
such an electron represents a source of radiation. The radiated power decreased the
energy of the electron [dE/dt = −P with P taken from Exc. 8.2.3.1(c)]. Derive a
differential equation for the temporal variation of the radius R(t) of the electronic
orbit, and integrate it with the boundary conditions t0 = 0 and R(t0) = aB , where
aB = 0.53× 10−8 cm is the Bohr radius. After what time T do we get R(T ) = 0?

8.2.3.3 Ex: Dynamics of charged point particles

Consider a point particle with charge q and mass m and general electromagnetic fields
in vacuum, ~E(r, t) and ~B(r, t), which are not perturbed neither by the charge nor the
current resulting from the particle’s motion. On the particle acts the Coulomb-Lorentz
force.
a. What are the equations of motion for the particle? What is the temporal variation
of its total kinetic energy? What condition must be satisfied to ensure that the kinetic
energy of the particle is temporally constant?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_CargaAcelerada01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_CargaAcelerada02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_CargaAcelerada03.pdf
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b. We now consider homogeneous fields ~E(r, t) = E0êz and ~B(r, t) = B0êz. What are
the equations of motion now?
c. The particle is at time t = 0 at the origin of the coordinate system and has the
velocity v0. Solve the equations of motion. Help: Use the complex variable η = x+ıy
and add the equations of motion to obtain a complex equation motion for η of the
type η̈ = −ıωη̇ with ω = q ~B0/(mc).
d. How does the kinetic energy of the particle vary over time?

8.2.3.4 Ex: Excitation of an electron by circularly polarized light

Derive the expression for the dipole radiation from the Maxwell equations proceeding
in the following way:
a. Derive the equation of motion of a point particle of charge q and mass m in an elec-
tromagnetic field (~E , ~B) neglecting the emission of radiation by the moving charge.
Determine the temporal variation of the particle’s energy W inside the external field.
b. A circularly polarized monochromatic wave in vacuum is described by the electric
field, ~E(r, t) = E [cos(kz − ωt)êx + sin(kz − ωt)êy]. Calculate the corresponding mag-

netic field ~B(r, t).

c. Calculate the Poynting vector ~S(r, t).
d. For an energy flux of the electromagnetic wave of 10 W/m2 calculate the ampli-
tudes of the electric and the magnetic field.
e. For the particle of part (a) moving in the fields of part (b) establish the equation
of motion.
f. Initially (t = 0) the particle is at the origin of the coordinate system. How should
the initial condition for the velocity be chosen in order to obtain a constant energy
for the particle?
g. Determine the momentum p of the particle and verify that p⊥ = pxêx + pyêy
coincides at every instant of time with the direction of ~B.
h. Solve the equation of motion with the initial conditions of part (d).
i. What is the form of the particle’s trajectory in the x-y plane?

8.2.3.5 Ex: Charge and current densities for radiative atomic transitions

The charge and current densities for radiative atomic transitions from the state m = 0,
2p of hydrogen to the ground state 1s, are (neglecting the spin),

%(r, θ, φ, t) =
2e√
6a4
B

re−3r/2aBY00Y10e
−ıω0t , j(r, θ, φ, t) = −ıv0

(
êr
2

+
aB
z

êz

)
%(r, θ, φ, t) ,

where v0 = αc is the orbital velocity of the electron, aB the Bohr radius, and α the
Sommerfeld constant.
a. Show that the effective transitional orbital ’magnetization’ is,

~Mef (r, θ, φ, t) = −ıαcaB
2

tan θ(êx sinφ− êy cosφ)%(r, θ, φ, t) .

Calculate ∇ · ~Mef and evaluate the electric and magnetic dipole moments.
b. In the electric dipole approximation, calculate the temporal average of the total
radiated power. Express your response in units of (~ω0)(α4c/aB).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_CargaAcelerada04.pdf
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c. Interpreting the classically calculated power as the energy of a photon (~ω0) times
the transition probability, numerically evaluate the transition probability in units of
reciprocal seconds.
d. If, instead of the semiclassic charge density used above, the electron in the 2p
state is described by a circular Bohr orbit of radius 2aB , rotating with the transition
frequency ω0, what would be the radiated power? Express your answer in the same
units as in part (b), and evaluate the ratio of the two powers numerically.

8.2.3.6 Ex: Synchrotron radiation

In the discussion of the Bremsstrahlung in class we assumed that the velocity and
the acceleration were (at least instantaneously) collinear. Do the same analysis for
the case, that they are perpendicular. Choose your axes so that v is along the z-
axis and a along the x-axis (see Fig. 8.5), such that v = vêz, a = êx and R =
sin θ cosφêx + sin θ sinφêy + cos θêz. Verify whether P is consistent with the Liénard
formula.

8.2.3.7 Ex: Cherenkov radiation

Cherenkov radiation is observed, when a charge moves with relativistic velocity within
a dielectric medium, which reduces the speed of light below the velocity of the particle.
A blue superluminal shock wave is then formed.
a. Calculate the angle θc between the propagation direction of the charge and the
propagation direction of the shock wavefront.
b. We now imagine the deceleration process of the charge inside the dielectric as
being due to a collision with a heavy molecule of the dielectric material. The collision
creates a photon emitted under the angle θc and the momentum of charge is deflected.
We despise the recoil of the molecule. Based on relativistic energy and momentum
conservation, calculate the angle θc in terms of the momenta of charge before and
after the collision and of the radiated frequency.
c. Comparing the results obtained in (a) and (b), calculate the rest mass of the charge.
d. Calculate the retarded Liénard-Wiechert potentials inside and outside of the cone.

8.2.3.8 Ex: Electron subject to gravity

An electron is released from rest and falls under the influence of gravity. Within the
first centimeter, what fraction of the lost potential energy is radiated?

8.2.3.9 Ex: Radiation reaction

Including the radiative reaction force (8.115), Newton’s second law for a charged
particle becomes,

a = τ ȧ+
F

m
,

where F is an external force acting on the particle.
a. In contrast to the case of an uncharged particle (a = F/m), the acceleration (in
the same way as position and velocity) must be a continuous function of time, even

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_CargaAcelerada06.pdf
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when the force changes abruptly. (Physically, the radiative reaction dampens out any
rapid variation in a.) Show that a is continuous at any time t by integrating the given
equation of motion between (t− ε) and (t+ ε) and evaluating the limit ε→ 0.
b. A particle be subjected to a constant force F , beginning at time t = 0 and remaining
until the time T . Find the most general solution a(t) of the equation of motion in
each of the three stages: (i) t < 0; (ii) 0 < t < T ; and (iii) t > T .
c. Impose the continuity condition (a) at times t = 0 and t = T . Show, that it
is possible to either eliminate ’runaway-acceleration’ in region (iii) or avoid ’pre-
acceleration’ in region (i), but not both.
d. Choosing to eliminate the runaway-acceleration, what will be the acceleration, as a
function of time, in each stage (i-iii)? How will the velocity behave, which obviously
must be continuous at t = 0 and t = T . Assume, that the particle was initially at
rest: v(−∞) = 0. Prepare schemes of a(t) and v(t) and compare with the behavior
of a neutral particle.
e. Repeat (d) choosing the option to eliminate pre-acceleration.

8.2.3.10 Ex: Charges accelerated by gravity

Compare the emission of radiation of a electron resting in the lab frame with the one
of a free falling electron in its inertial frame [44].

8.3 Diffraction and scattering

Radiation (let us call it ’light’ for simplicity) incident on a target (e.g. a charge and
current distribution, a dielectric body, an atomic cloud, or anything else) will be
absorbed, diffracted or scattered. In the absence of absorption, the entire incident
energy must be re-emitted. Whether the re-emission process is best described by
diffraction or scattering models depends on the wavelength λ of light in relation to the
size of the target and its structure. When the target is small, we can treat the problem
in the lowest (usually dipolar) multipolar order; for a target of comparable size with
λ, a complete multipolar treatment is required, and in the limit of a large target, we
can resort to semi-geometrical methods to explain deviations from geometric optics
caused by diffraction.

The topic of diffraction and scattering is well covered in the literature [48]. Rather
than reproducing these theories here, we will give in this course a brief introduction
to the coupled-dipoles model. This model, which has received much attention in recent
years, has proven capable, albeit renouncing of notions such as the refraction index, to
give a microscopic view of many macroscopic scattering and diffraction phenomena.

8.3.1 Coupled dipoles model

The electrodynamics contained in Maxwell’s macroscopic equations describes the in-
teraction of light with matter characterized by a refractive index n(r). The refractive
index is understood as a continuous field, which fully describes the reaction of the tar-
get to incident light. On the other hand, we know how the microscopic constituents,
that is, the atoms and molecules of the target material, react individually to incident
light. In the simplest case, a two-level atom will absorb a photon carrying an electron

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_CargaAcelerada10.pdf
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to a higher orbit, and when the electron returns to the original state, it will emit a
photon into an arbitrary direction, that is, isotropically in the time average.

The difficulty now resides in the linking of the macro- and microscopic images,
illustrated in Fig. 8.6, to a complete theory. Indeed, all atoms or molecules in the
crystal must cooperate in some way to generate a refractive index and macroscopic
scattering phenomena described by the laws of Snellius, Lambert-Beer, or Ewald-
Oseen [14]. The details of how this cooperation works are being studied in several
laboratories around the world [84, 85, 26].

Figure 8.6: (Left) Macroscopic refraction and (right) microscopic scattering. See also (watch
talk).

From a microscopic point of view, the refractive index is an artifact; it does not
exist like an atom exists! Since Democritus’ reflections on the nature of matter 350
years before Christ, we know that what does exist are ’atoms and empty space, the
remainder is mere opinion’. The index of refraction can help us to simplify the
description of how light interacts with macroscopic objects. But this does not always
work, and in some circumstances even leads to paradoxical results, that are difficult
to resolve within Maxwell’s theory of electromagnetism. This is, for example, the
case of the famous Abraham and Minkowski dilemma, which since 1909, when these
two physicists proposed different calculations for the photonic momentum inside a
dielectric medium leading to different results, still gives rise to debates. But there are
also other situations, where microscopic theory is able to describe phenomena beyond
the macroscopic approximation of continuous media. These are phenomena due to
disorder, such as Anderson’s localization of light or the spontaneous synchronization
of atomic dipoles in superradiance.

In the simplest version of the coupled-dipoles model we imagine the target as a
(more or less dense) sample of point-like two-level atoms, so that the radiation of the
atoms can be described in the dipolar limit, aB � λ, where the Bohr radius gives a
typical scale for the extension of the radiation source. We will not reproduce integrally
the derivation of the coupled-dipoles model here, which borrows from the theory of
quantum mechanics. Instead, we will superficially trace the line of argumentation
and justify the results by showing that, in the limit of a smooth distribution of the
atomic scatterers, we recover the classical laws of Maxwell’s theory.

8.3.1.1 Rayleigh scattering

To describe the Rayleigh scattering from an atom, we need to understand the phe-
nomenon of spontaneous emission. This is usually achieved by the Weisskopf-Wigner
theory starting from the Hamiltonian describing the interaction of a single two-level

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/AbrahamMinkowski
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atom of the sample (labeled j) interacting with an incident laser,

Ĥj = ~gk0

(
σ̂je
−ıωat + σ̂†je

ıωat
)(

â†k0
eıω0t−ık0·rj + âk0

e−ıω0t+ık0·rj
)

(8.118)

+
∑

k

~gk
(
σ̂je
−ıωat + σ̂†je

ıωat
)(

â†ke
ıωkt−ık·rj + âke

−ıωkt+ık·rj
)
.

Here, ω0, ωa, and ωk are, respectively, the frequencies of the incident laser, the atomic
resonance and the scattered light 6. gk0 is the coupling strength between the atom
and the incident light mode and gk = d

√
ω/(~ε0V ) describes the coupling between

the atom and a vacuum mode with the volume V . σ̂j = |g〉〈e| is the lowering operator
of the atomic excitation, that is, it describes the transition of the jth atom from the
excited state |e〉 to the ground state |g〉. âk is the annihilation operator of a photon
in the mode k.

Figure 8.7: Scheme of the interaction of a light beam with a sample of atoms.

Now, considering an incident light mode (e.g. a laser beam) with high power,

âk0 |n0〉k0 =
√
n0|n0 − 1〉k0 ' α0|n0〉k0 , (8.119)

âk0
is approximately an observable, whose amplitude is proportional to the root of

the intensity. As [âk0 , â
†
k0

] ' 0, we can disregard the quantum nature and treat the
incident light as a classical field by replacing Ω0 ≡ 2α0gk0 , where Ω0 is the Rabi
frequency. The rotating wave approximation (RWA) allows us to neglect those terms
of the Hamiltonian, which (in the first perturbative order) do not conserve energy,
that is, terms proportional to σ̂−j â and σ̂+

j â
†. Introducing the abbreviations,

∆0 ≡ ω0 − ωa and ∆k ≡ ωk − ωa . (8.120)

the Hamiltonian becomes,

Ĥ = ~
2 Ω0

(
σ̂â†k0

eı∆0t + h.c.
)

+ ~
∑

k

(
gkσ̂â

†
ke
ı∆kt + h.c.

)
. (8.121)

The system can be found in three states,

|Ψ(t)〉 = α(t)|0〉a|0〉k + β(t)|1〉a|0〉k +
∑

k

γk(t)|0〉a|1〉k . (8.122)

6We are only considering fixed atoms in space, that is, we do not allow acceleration by photonic
recoil.
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Before the scattering the system is, with the probability amplitude α, in the state
|0〉a|0〉k. After the absorption of a photon, with the probability amplitude β, the atom
is excited |1〉a|0〉k. Finally, after the reemission of the photon to a mode k, with the
probability amplitude γk, the state of the system is |0〉a|1〉k. The temporal evolution
of the probability amplitudes is obtained by inserting the Hamiltonian (8.121) and
the ansatz (8.122) into the Schrödinger equation,

d

dt
|Ψ(t)〉 = − ı

~
Ĥ|Ψ(t)〉 . (8.123)

We get, after a calculation which is not reproduced here 7 and which makes use of the
so-called Markov approximation postulating that the variation of the amplitudes βj(t)
is slower than the evolution of the system given by eı(ωk−ω0)t, the following equation
of motion for the amplitudes βj ,

β̇j =

(
ı∆0 −

Γ

2

)
βj −

ıΩ0

2
eık0·rj . (8.124)

This equation correctly describes the dynamics of the probability amplitude of finding
an atom exposed to a laser beam and subject to spontaneous emission of its excited
state.

8.3.1.2 Collective scattering

In the presence of several atoms, the full Hamiltonian for the atomic cloud is simply
obtained by summing over the N atoms 8,

Ĥ =

N∑

j=1

Ĥj . (8.125)

Following the same scheme as in the last section, the Schrödinger equation with the
Hamiltonian (8.125) where (8.118) can be resolved to the limit of weak excitation:
Let us restrict to the situation in which at most a single photon or a single atomic
excitation can be in the system. This assumption is realistic, when the time for
reemitting a photon is short. The state created by the passage of a single photon is a
collective state, because the atomic sample can either be entirely in the ground state
before a scattering event, |g1, .., gN 〉|0〉k, or after a scattering event, |g1, .., gN 〉|1〉k, or
else any one of the atoms j can be excited, |g1, .., ej , .., gN 〉|0〉k, during the scattering
event. All information on the system is coded in the temporal dependencies of the
probability amplitudes for these states, which we obtain through the insertion of the

7See the script Quantum Mechanics by the same author Scripts/QuantumMechanicsScript .
8We do not consider in this Hamiltonian collisional interactions between the atoms, for example,

of the van der Waals type, which can have a great impact at high densities n� λ−3.
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wavefunction 9,

|Ψ〉 = α(t)|g1 . . . gN 〉|0〉k + e−ı∆0t
N∑

j=1

βj(t)|g1 . . . ej . . . gN 〉|0〉k (8.126)

+
∑

k

γk(t)|g1 . . . gN 〉|1〉k +

N∑

m,n=1

εm<n,k(t)|g1 . . . em . . . en . . . gN 〉|1〉k .

within the Schrödinger equation. What we get is a set of integro-differential equations
for the amplitudes α, β, and γk, which can be solved within the Markov approxima-
tion,

β̇j =

(
ı∆0 −

Γ

2

)
βj −

ıΩ0

2
eık0·rj − Γ

2

∑

m6=j

eık0|rj−rm|

ık0|rj − rm|
βm . (8.127)

We note, that the first two terms of this equation correspond to the equation describ-
ing the dynamics of a single atom (8.124). The third term corresponds to processes,
where photons scattered at an atom are reabsorbed by another atom.

Figure 8.8: Illustration of cooperative scattering: From (a) to (c) a photon traversing an
atomic cloud first excites the upstream dipoles, which immediately begin to radiate. The
downstream dipoles are excited later on. The phase lag of the reemission processes leads to
a radiative emission pattern being strongly peaked into forward direction.

The claim is now that equation (8.127) (or at least its generalization to level
systems allowing to take account of the vectorial nature of light) is capable of re-
producing all phenomena of macroscopic scattering, usually described by Maxwell’s
theory, for example, refraction, diffraction, Mie and Bragg scattering, etc. In ad-
dition, it correctly describes microscopic scattering phenomena, such as cooperative
Rayleigh scattering, Anderson location, photonic band gaps, etc.

8.3.2 The limit of the Mie scattering and the role of the re-
fractive index

In practice, the exploitation of the N coupled equations (8.127) (one for each atom),
which needs to be done numerically, is limited by computer capacity to some 100 000
atoms. On the other hand, at least, in the limit of high densities, we may hope, that

9The fourth term corresponds to the presence of two simultaneously excited atoms plus a (virtual)
photon with ’negative’ energy. These states need to be taken into account, if we do not want to
make use ofthe RWA approximation.
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the atomic cloud be well described by a continuous density distribution,

∑

j

βj →
∫
β(r′)ρ(r′)dV ′ . (8.128)

Considering the stationary case, β̇j = 0, we arrive at,

Ω0

2
eık0·r = (∆0 + ıΓ)β(r) +

Γ

2

∫
eık0|r−r

′|

k0|r− r′|β(r′)ρ(r′)dV ′ . (8.129)

We note that the kernel of the above equation is the Green function of the Helmholtz
equation, since,

[∇2 + k2
0]
eık0|r−r

′|

4π|r− r′| = −δ(3)(r− r′) . (8.130)

Now, by applying the operator [∇2 + k2
0] to both sides of equation (8.129), we arrive

at,

0 = (∆0 + ıΓ)[∇2 + k2
0]β(r)− 2πΓ

β(r)ρ(r)

k0
, (8.131)

that is [34, 9, 10],

[∇2 + k2
0n(r)2]β(r) = 0 defining n2(r) ≡ 1− 4πρ(r)

k3
0(2∆0/Γ + ı)

. (8.132)

This is the Helmholtz equation of Maxwell’s theory. The reappearance of the refractive
index n(r) is the price to pay for smoothing the density distribution, and with it
we lose all effects related to discretization and cloud disorder. In Exc. 8.3.3.1 we
compare the result of the smoothed coupled-dipole model (8.132) to the macroscopic
susceptibility derived from the Lorentz model (7.143), and to the Clausius-Mossotti
formula (3.28).

Example 92 (Bragg scattering by partially disordered clouds): Fig. 8.9

shows the example of Bragg scattering by an atomic cloud. Without disorder

we would expect an incident laser beam to be partially reflected and partially

transmitted. The simulation of the stationary version of equation (8.127) for

the scattering of the cloud illustrated in (a) shows, in addition to transmission

and reflection, a random pattern of specular scattering in all directions, which

can be attributed to disorder.

Example 93 (Collective radiative pressure): The internal and the global

structure of an atomic cloud both dramatically influence the radiative pressure

force exerted on its center of mass. We compare two limiting cases [26]: (a) For

large dilute clouds, scattering by intrinsic disorder prevails. The more atoms

are in the cloud, the more pronounced is the forward scattering of the light.

Therefore, the radiative pressure force per atom exerted by the incident light

decreases with N . (b) For small dense clouds, the scattering is rather governed

by the global inhomogeneous shape of the cloud. The more atoms are in the

cloud, the greater the variation of the refractive index and the greater the re-

fractive deflection of photons off the optical axis [13]. Therefore, the radiation

pressure force per atom exerted by the incident light increases with N , as shown

in Fig. 8.10(c).
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Figure 8.9: (a) Experimental scheme for Bragg reflection by an ordered atomic cloud in
a periodic pile of pancakes. (b) Simulation of the stationary cloud scattering equation
schematized in (a).

Figure 8.10: (a) Rayleigh scattering by a disordered cloud. (b) Mie scattering via wavefront
deformation by the refractive index of an optically dense cloud. (c) Dependence of the
radiation pressure force on the number of atoms for the two cases (a) and (b).

Microscopic collective scattering depends on one hand on the internal spatial dis-
tribution of the scatterers, that is, the intrinsic disorder, and on the other hand on the
global distribution, i.e. the shape and the size of the cloud and its density distribution
near the edges, which may be smooth or abrupt. In the limit of despicable disorder,
we have seen that the theory of collective scattering is equivalent to Maxwell’s macro-
scopic theory. In this limit, we can describe the cloud of scatterers as a (locally)
homogeneous sphere characterized by a refractive index n(r), which varies spatially
with the density of the scatterers. Let us assume, for simplicity, a spherical cloud
with a homogeneous refraction index n(r) = n0 inside the cloud and n(r) = 1 out-
side. The scattering of a plane wave of radiation by a dielectric sphere is known
as Mie scattering . In Mie’s theory we expand the incident plane wave into partial
spherical waves,

eık·r =
√

4π

∞∑

`=0

√
2`+ 1ı`j`(kr)Y`0(êr) , (8.133)
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which must satisfy the boundary condition for electromagnetic waves at the outer
edge of the sphere. This is illustrated in Fig. 8.11. Theoretically it should be possible
to observe Mie resonances with atomic clouds, albeit strictly speaking, they do not
have a surface which could act like an abrupt boundary condition.

Figure 8.11: Two types of Mie resonances are possible: (i) Waves propagating in the interior
of the body and form a stationary wave bounded by the surface and (ii) evanescent waves
that propagate on the surface of the body (whispering gallery modes). The resonances of
type (ii) require abrupt boundary conditions.

8.3.3 Exercises

8.3.3.1 Ex: Coupled dipoles versus Clausius-Mossotti

Compare the result of the smoothed coupled-dipole model (8.132) to the macroscopic
susceptibility derived from the Lorentz model (7.143), and to the Clausius-Mossotti
formula (3.28).

8.4 Further reading

M.J. Berg et al., A new explanation of the extinction paradox [DOI]

V.C. Ballenegger, The Ewald-Oseen extinction theorem and extinction lengths [DOI]

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_CoupledClausius.pdf
http://doi.org/10.1016/j.jqsrt.2010.08.024
http://doi.org/10.1119/1.19330
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Chapter 9

Theory of special relativity

Until the end of the nineteenth century people believed in the existence of an ’ether’,
that is, a medium capable of carrying oscillations of the electromagnetic field in a
similar way as water transports surface waves or the air propagates the sound. The
propagation velocity of the light must then have a certain value c in this ether. But
when measured in another inertial system, according to the Galilei transformation,
propagation velocity should be the sum of c and the velocity v of the inertial system
through the ether. This ether would be fixed to the universe, and the earth would
have a velocity v with respect to this ether.

With the objective of measuring the relative velocity between a fixed laboratory
and the ether, Michelson and Morley did an experiment known as Michelson-Morley
experiment, and which now represents one of the foundations of the theory of special
relativity. It consists of a Michelson interferometer, which can be rotated in space.
If an ’ether’ existed, which is not fixed to the Earth, the speed of light must be
anisotropic and the interference fringes observed in the interferometer must move
when the interferometer is rotated. This was not observed.

Figure 9.1: Scheme of the Michelson-Morley experiment.

Within the resting system (the ether) the times required for light to travel through
each of the interferometer arms are,

t1,2 =
2L

c
. (9.1)

In a frame moving in the direction of one of the arms these times would be,

t1 =
2L

c

1√
1− β2

and t2 =
L

c+ v
+

L

c− v =
2L

c

1

1− β2
. (9.2)

The experiment confirms the result (9.1) regardless of the rotation of the interferom-
eter.

363
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Guided by Michelson’s observation it was Poincaré, who first proposed the absence
of an ether, which motivated Einstein to formulate the following postulates:

Law A: The laws of physics do not depend on a translatory motion of the system as a
whole. There is no particular system, in which the ’ether’ would be at rest.

Law B: The speed of light is constant in all inertial systems and regardless of the speed
of the emitting source.

These postulates revolutionized classical mechanics. The new theory, called the
theory of special relativity, still contains classical mechanics in the limit of slow veloc-
ities, but extends its validity to the limit of velocities approaching the speed of light.
Moreover, special relativity reconciles mechanics with electrodynamics in a natural
way, as we will show in the following sections.

9.1 Relativistic metric and Lorentz transform

In the theory of relativity, the space represented by the vector r and the time repre-
sented by the scalar ct (where we multiply the universal speed of light for dimension-
ality reasons) are treated on equal footing. There are other combinations of scalar and
vectorial physical quantities such as energy E/c and linear momentum p which, when
combined to a four-dimensional entity, allow for a more symmetrical representation
of the fundamental laws of physics. Let us, in the following, set the foundations of
this new formalism developed by Poincaré, Lorentz, Einstein, and Minkowski.

9.1.1 Ricci’s calculus, Minkowski’s metric, and space-time ten-
sors

In the notation of 4-dimensional space-time vectors the physical quantities are de-
scribed (or combined) by tensors of rank k, e.g. scalars A, vectors Aµ, matrices Aµν ,
and tensors of higher ranks Aµνλ.... Tensors can be contravariant, Aµ, or covariant,
Aµ, with respect to an index, depending on their behavior regarding the Lorentz
transform (as we shall see shortly). Co- (or contra-) variant scalars are indepen-
dent of the inertial system and, therefore, called Lorentz invariants. The contra- and
covariant tensors are related by the Minkowski metric defined by (see also Sec. 1.4),

(gµν) ≡




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




, (9.3)

using the sum rule of Einstein, which consists in summing over all pairs of co- and
contravariant indices,

aµaµ ≡
∑

µ
aµaµ , (9.4)

via
aµ = gµνaν . (9.5)
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We note that the first index in a matrix counts the columns and the second index the
rows. For flat space-time (that is, without curvature),

g ν
µ = gµαg

αν = δνµ , gµν = gµν that is ǧ−1 = ǧ = ǧᵀ , (9.6)

where δνµ is the Kronecker symbol and the decoration ’∨’ denotes a matrix, ǎ ≡ (aµν).

Thus, the identity and the metric are the two faces of the same tensor, δ̌ = ǧ. The
norm is defined by,

‖(aµ)‖ ≡
√
aµaµ =

√
aµgµνaν . (9.7)

The product between two contravariant vectors is given by,

aµbµ ≡ aµgµνbν . (9.8)

The tensors are represented by scalars, vectors and matrices. The vector symbol
is used for the contravariant column vector,

~a ≡ (aµ) =


a

0

a


 , ǎ ≡ (aµν) =


 a0 (am0)

(a0n) (amn)


 . (9.9)

The covariant vector is also represented by a column,

ǧ~a = (aµ) = (gµνa
ν) =


 a0

−a


 . (9.10)

Often, Greek letters are used as indices for space-time tensors, while Roman letters
are used as indices for spatial components. In order to work with vectors within
Minkowski’s formalism, we must interpret them as two-dimensional 1× 4 matrices,

~a ≡ (aµ1) , (9.11)

where the ’1’ indicates the number of columns of the matrix. Introducing the trans-
position, denoted by the symbol ’ᵀ’, as an exchange of the indices labeling rows and
columns,

Fµν = (F ᵀ)νµ , (9.12)

we can represent the transposition of a vector by a 4× 1 matrix,

~aᵀ = (aµ1)ᵀ = (a1µ) =
(
a0 a

)
, (9.13)

and define the scalar product between vectors in terms of the product between ma-
trices as,

~a ·~b ≡ (aµ1bµ1) = (aᵀ)1µ(bµ1) = (aᵀ)1µgµν(bν1) = ǎᵀǧb̌ (9.14)

=
(
a0 (am)

)

1 0

0 (−δmn)




 a0

(an)


 .

We conclude emphasizing that, to be able to multiply tensores as matrices, the indices
to be contracted must be adjacent. If necessary, the tensors must be transposed,

AµαBνα = Aµα(Bᵀ) να . (9.15)

One has to be very careful, because in general Aµα 6= Aαµ 6= Aαµ 6= Aµα 6= A µ
α 6=

A α
µ 6= Aµα 6= Aαµ.
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9.1.2 Lorentz transform

We are now in the shape to officially introduce our first explicit space-time vector by
combining the physical quantities time and position,

(rµ) ≡
(
ct

r

)
. (9.16)

In classical mechanics the transformation to a system moving at velocity β = v/c is
described by the Galilei transform given by,

(Gµν) ≡




1 0 0 0

0 1 0 0

0 0 1 0

−β 0 0 1




, (Gµν)−1 =




1 0 0 0

0 1 0 0

0 0 1 0

β 0 0 1




. (9.17)

Example 94 (Galilei transform): Let us try out the Galilei transform on the
space-time vector (9.16):

ct′

x′

y′

z′

 = (r′µ) = (Gµν)(rν) =


1 0 0 0

0 1 0 0

0 0 1 0

−β 0 0 1




ct

x

y

z

 =


ct

x

y

z − vt

 .

In classical mechanics wave propagation is conditioned to the existence of a medium.
Consequently, different inertial systems are not equivalent and, as will be shown in
a later section, the wave equation is not invariant to the Galilei transform. Let
us therefore look for another transformation, which preserves the shape of the wave
equation. We may, for example, request the transformation to ensure that the prop-
agation of the phase fronts of a spherical wave is independent of the inertial system:
c2t′2 − r′2 = c2t2 − r2.

The story of the Lorentz transform begins with Poincaré, who introduced the idea
of local time: According to him, simultaneity depends on the reference system. Voigt
attempted in 1897 for the first time to find a transformation that would conserve the
value of c, but it was Lorentz who found a transformation leaving Maxwell’s equations
invariant and, consequently, Helmholtz’s wave equation as well. The Lorentz trans-
form is linear with respect to the preservation of space-time intervals in Minkowski
space and, as we will see shortly, it removes the contradictions between classical me-
chanics and electrodynamics.

Consider a system S′ moving through our lab S at a velocity v = vêz. We define,

β =
v

c
and γ =

1√
1− β2

. (9.18)
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The matrix describing the Lorentz transform from system S to system S′ is,

Λ̌ = (Λµν) ≡




γ 0 0 −γβ
0 1 0 0

0 0 1 0

−γβ 0 0 γ




, Λ̌−1 = (Λµν)−1 =




γ 0 0 γβ

0 1 0 0

0 0 1 0

γβ 0 0 γ




(9.19)
that is, the inverse of the transformation matrix is obtained by changing the sign of
the velocity, v → −v. For the Lorentz transform tensor we can show,

(Λµν)−1 = gµωΛωκg
κν = Λ ν

µ that is Λ̌−1 = ǧΛ̌ǧ (9.20)

and ΛωµgωκΛκν = gµν that is Λ̌ᵀǧΛ̌ = ǧ .

The transformation from a laboratory reference frame S into a rest frame S′ is done
by,

A′µ = ΛµνA
ν . (9.21)

Time-space scalars are always Lorentz invariant. We consider, for example,

x′µx
′µ = Λ ν

µ xνΛµωx
ω = (Λ̌−1Λ̌)νωxνx

ω = I xωxω . (9.22)

For space-time differentials, since,

dx′µ =
∂x′µ

∂xν
dxν , (9.23)

comparing with the relationship (9.21), we can identify,

Λµν =
∂x′µ

∂xν
. (9.24)

Contra- and covariant tensors are defined by their different behavior under arbi-
trary coordinate transformation. For example, in the case of Lorentz transforms,

A′µ =
∂xν

∂x′µ
Aν , A′µ =

∂x′µ

∂xν
Aν . (9.25)

Similarly, tensors or higher rank satisfy,

A′µν =
∂xµ

∂x′ν
∂xν

∂x′β
Aνβ , A′µν =

∂x′µ

∂xν
∂x′ν

∂xβ
Aνβ , (9.26)

and also,
A′µ1..µn

ν1..νm = Λµ1
ω1
..ΛµnωnΛ κ1

ν1 ..Λ
κn
νn Aω1..ωn

κ1..κm . (9.27)

In Exc. 9.1.7.1 we show that the derivative by a covariant coordinate is contravariant.

Example 95 (Lorentz transform): In the limit of slow velocities, v � c, the
Lorentz transform converges to the Galilei transform. This can be seen rewriting
the Lorentz transform as,t′

z′

 =

 γ − γβ
c

−γβ γ

t
z

 '
 1 0

−β 1

t
z

 .
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Example 96 (Lorentz transform): We have,

Λµν =
∂x′µ

∂xν
=

(
∂x′µ
∂xν

)−1

=

(
∂xν

∂x′µ

)−1

= (Λ ν
µ )−1 .

9.1.3 Contraction of space

Einstein’s theory has important consequences, such as the contraction of space and
the dilatation of time. Let us consider a rod moving through the lab S with velocity
v. The rod delimits two points j = 1, 2 in space-time for which we measure in the lab
(at time t = t1 = t2) the distance z2 − z1. The spatio-temporal points are Lorentz-
transformed to the system S′, in which the rod is at rest (neglecting transverse spatial
dimensions), by, 

ct
′
j

z′j


 = (Λµν)


ct
zj


 =


 γct− γβzj
−γβct+ γzj


 . (9.28)

Hence,
z′2 − z′1 = −γβct+ γz2 + γβct− γz1 = γ(z2 − z1) . (9.29)

Consequently, in the lab the distance seems smaller than in the rest frame 1.

9.1.4 Dilatation of time

We consider a clock flying through the lab S at a velocity v. The clock produces
regular time intervals, for which we measure in the lab the duration t2 − t1. The
spatio-temporal points are Lorentz-transformed to the system S′ in which the clock
is at rest (z′ = z′1 = z′2) via,


ct

′
j

z′


 = (Λµν)


ctj
zj


 =


 γctj − γβzj
−γβctj + γzj


 . (9.30)

Hence,

t′2 − t′1 = γt2 − γβ
z2

c
− γt1 + γβ

z1

c
(9.31)

= γt2 − β
(
z′

c
+ γβt2

)
− γt1 + β

(
z′

c
+ γβt1

)
= γ−1(t2 − t1) .

Consequently, in the lab the time interval seems longer than in the rest frame.
A good illustration of the effect of time dilatation is the twin paradox. A twin

begins an interstellar voyage aboard a space ship traveling at a constant velocity.
Twin B, who remained on Earth calculates, that the time elapsed for his twin A is
smaller than his own time. Twin B calculates that the elapsed time for his twin A
is shorter. Who’s right? Twin A is wrong, because his system must be accelerated
when taking off from Earth. Note that only special relativity is required to understand

1Alternatively, we can measure the instants of time tj when the ends of the rod pass by a certain
point z of the lab, such that l = v(t2 − t1).
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Figure 9.2: Illustration of (a) contraction of space and (b) dilatation of time.

the effect 2: Take for example, a third person traveling back to Earth after having
synchronized its clock with twin A. We calculate in Excs. 9.1.7.2 to 9.1.7.5 examples
of temporal dilatation.

9.1.5 Transformational behavior of the wave equation

In the previous section we have seen that the relativistic metric is based on the co-
variant formulation of mechanics with the definition of relativistic space-time vectors.
We introduced the quadri-vectors of the displacement ∆rµ, of the position (rµ), and
of the gradient (∂µ),

(∆rµ) ≡
(
c∆t

∆r

)
, (rµ) ≡

(
ct

r

)
, (∂µ) ≡

( 1
c
∂
∂t

−∇

)
. (9.32)

The contraction of quadri-vectors produces Lorentz invariants, such as the quadri-
scalars of space-time intervals ∆s2, of proper time ∆τ , of proper distance |∆ ~S|, or of
the d’Alembertian �, given by,

∆s2 ≡ ∆rµ∆rµ = c2∆t2 −∆r2 , (9.33)

∆τ ≡
√

∆s2

c2 for ’time’-like intervals ∆s2 > 0 ,

|∆s| ≡
√
−∆s2 for ’space’-like intervals ∆s2 < 0 ,

� ≡ ∂µ∂µ = 1
c2

∂2

∂t2 −∇2 .

With these definitions we can write the wave equation in the absence of sources,

�ψ = ∂µ∂µψ = 0 . (9.34)

The covariant form of the wave equation already shows its compatibility with the
Lorentz transform. Nevertheless, we will discuss the transformation properties in the
following. These are fundamental, since the propagation of light, whose invariant
velocity triggered the theory of relativity, is an undulatory phenomenon.

2[http://de.wikipedia.org/wiki/Zwillingsparadox]
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9.1.5.1 Wave equation under Galilei transformation

The Galilei transformation claims that we obtain the coordinates of an object in a
system S′ simply by substituting z → z′ and t→ t′ with 3,

t′ ≡ t and z′ ≡ z − v0t or (9.35)

t ≡ t′ and z ≡ z′ + v0t ,

which implies

v′ =
∂z′

∂t′
=
∂z

∂t
− v0 = v − v0 . (9.36)

Figure 9.3: Wave in the inertial system S as seen by an observer in the system S′ moving
at a velocity u.

Newton’s classical mechanics is Galilei invariant, which means that the funda-
mental equations of the type,

mv̇i = −∇xi
∑

j

Vij(|xi − xj |) , (9.37)

do not change their shape under the Galilei transform. In contrast, the wave equation
is not Galilei invariant. To see this, we consider a wave in the inertial system S,
which is resting with respect to the propagation medium, being described by Y (z, t)
and satisfying the wave equation,

∂2Y (z, t)

∂t2
= c2

∂2Y (z, t)

∂z2
. (9.38)

An observer sits in the inertial system S′ moving with respect to S with the speed
v0, such that z′ = z − v0t. The question now is, what is the equation of motion for
this wave described by Y ′(z′, t′), that is, we want to check the validity of

∂2Y ′(z′, t′)

∂t′2
?
= c2

∂2Y ′(z′, t′)

∂z′2
. (9.39)

For example, the wave Y (z, t) = sin k(z − ct) traveling to the right is perceived in
the system S′, which is also traveling to the right, as Y ′(z′, t′) = sin k[z′−(c−v0)t′] =
Y (z, t) applying the Galilei transform. Therefore,

Y ′(z′, t′) = Y (z, t) , (9.40)

3Note that the Galilei transform (9.17) is unitary because detG = 1.
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that is, we expect that the laws valid in S are also valid in S′. We calculate the
partial derivatives,

∂Y ′(z′, t′)

∂t′
=
∂Y (z, t)

∂t′
=

∂t

∂t′
∂Y (z, t)

∂t

∣∣∣∣
z=const

+
∂z

∂t′
∂Y (z, t)

∂z

∣∣∣∣
t=const

=
∂Y (z, t)

∂t
+ v0

∂Y (z, t)

∂z

∂Y ′(z′, t′)

∂z′
=
∂Y (z, t)

∂z′
=

∂t

∂z′
∂Y (z, t)

∂t

∣∣∣∣
z=const

+
∂z

∂z′
∂Y (z, t)

∂z

∣∣∣∣
t=const

=
∂Y (z, t)

∂z
. (9.41)

Therefore, we conclude that the wave equation in the propagating system is modified:

∂2Y ′(z′, t′)

∂t′2
→
=
∂2Y (z, t)

∂t2
+ v2

0

∂2Y (z, t)

∂z2
+ 2v0

∂2Y (z, t)

∂t∂z
(9.42)

eq.onda
= c2

∂2Y (z, t)

∂z2
+ v2

0

∂2Y (z, t)

∂z2
+ 2v0

∂2Y (z, t)

∂t∂z

←
= (c2 − v2

0)
∂2Y ′(z′, t′)

∂z′2
+ 2v0

∂2Y ′(z′, t′)

∂t′∂z′
.

Only in cases where the wave function can be written as Y (z, t) = f(z − ct) =
f(z′ − (c− v0)t′) = f ′(z′ − ct′) = Y ′(z′, t′), will we obtain a similar wave equation to
that of the system S, but with a modified propagation velocity. We calculate,

∂f ′(z′ − ct′)
∂t′

=
∂f(z′ − (c− v0)t′)

∂t′
= (v0 − c)

∂f(z′ − (c− v0)t′)

∂z′
= (v0 − c)

∂f ′(z′ − ct′)
∂z′

,

(9.43)

and the second derivative,

∂2f ′(z′ − ct′)
∂t′2

= (c− v0)2 ∂
2f ′(z′ − ct′)

∂z′2
. (9.44)

The observation that the wave equation is not Galilei invariant expresses the fact,
that there is a preferential system for the wave to propagate, which is simply the
system in which the propagation medium is at rest. Only in this inertial system will
a spherical wave propagate isotropically.

Example 97 (Wave equation under Galilei transformation): Let us now
verify the correctness of the wave equation in the propagating system S′ using
the example of a sine wave,

(c2 − v2
0)
∂2 sin k[z′ − (c− v0)t′]

∂z′2
+ 2v0

∂2 sin k[z′ − (c− v0)t′]

∂z′∂t′

= −k2(c2 − v2
0) sin k[z′ − (c− v0)t′] + 2uk2(c− v0) sin k[z′ − (c− v0)t′]

= −k2(c− v0)2 sin k[z′ − (c− v0)t′] =
∂2 sin k[z′ − (c− v0)t′]

∂t′2
.

9.1.5.2 Wave equation under Lorentz transformation

The question now is, how to deal with electromagnetic waves which are lacking a prop-
agation medium, as we have already noted and as has been verified by Michelson’s
famous experiment. If there is no propagation medium, all inertial systems should be
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equivalent, and the wave equation should be the same in all systems, and so should
be the propagation velocity, i.e. the speed of light. These were the consideration of
Jules Henry Poincaré. To solve the problem we need another transformation than
that of Galileo Galilei. It was Hendrik Antoon Lorentz who found the solution, but
the biggest intellectual challenge was to accept all consequences of this new transfor-
mation. Albert Einstein accepted the challenge and created a new mechanics, which
he called relativistic mechanics. The wave equation for electromagnetic waves, called
the Helmholtz equation, being a direct consequence of Maxwell’s theory, it is not sur-
prising that the relativistic theory proved not only compatible with electrodynamic
theory, but provides a much deeper understanding of the latter.

We begin with the ansatz of a general transformation connecting temporal and
spatial coordinates via four unknown parameters, γ, γ̃, β, and β̃,

ct = γ(ct′ + βz′) and z = γ̃(z′ + β̃ct′) . (9.45)

A similar calculation as the one made for the Galilei transformation now gives the
first derivatives,

∂Y ′(z′, t′)

c∂t′
=
∂Y (z, t)

c∂t′
=

∂t

∂t′
∂Y (z, t)

c∂t

∣∣∣∣
z=const

+
∂z

c∂t′
∂Y (z, t)

∂z

∣∣∣∣
t=const

= γ
∂Y (z, t)

c∂t
+ γ̃β̃

∂Y (z, t)

∂z

(9.46)

∂Y ′(z′, t′)

∂z′
=
∂Y (z, t)

∂z′
=
c∂t

∂z′
∂Y (z, t)

c∂t

∣∣∣∣
z=const

+
∂z

∂z′
∂Y (z, t)

∂z

∣∣∣∣
t=const

= γβ
∂Y (z, t)

c∂t
+ γ̃

∂Y (z, t)

∂z
.

The second derivatives and the application of the wave equation in the system S give,

∂2Y ′(z′, t′)

c2∂t′2
→
= γ2 ∂

2Y (z, t)

c2∂t2
+ 2γγ̃β̃

∂2Y (z, t)

c∂t∂z
+ (γ̃β̃)2 ∂

2Y (z, t)

∂z2
(9.47)

wave eq.
= γ2 ∂

2Y (z, t)

∂z2
+ 2γγ̃β̃

∂2Y (z, t)

c∂t∂z
+ (γ̃β̃)2 ∂

2Y (z, t)

c2∂t2

!
= (γβ)2 ∂

2Y (z, t)

c2∂t2
+ 2γγ̃β

∂2Y (z, t)

c∂t∂z
+ γ̃2 ∂

2Y (z, t)

∂z2

←
=
∂2Y ′(z′, t′)

∂z′2
.

That is, the wave equation in the system S′ has the same form 4, under the condition
that,

γ = γ̃ and (γβ)2 = (γ̃β̃)2 and β = β̃ . (9.48)

In addition, the transformation

ct

′

z′


 = Λ


ct
z


 with Λ ≡


 γ γβ

γβ γ


 (9.49)

has to be unitary, that is,

1 = det Λ = γγ̃ − γγ̃ββ̃ = γ2(1− β2) , (9.50)

which allows to relate the parameters γ and β by,

γ =
1√

1− β2
. (9.51)

4Note that the computation is dramatically simplified in the covariant formalism of 4-dimensional
space-time vectors introduced by Hermann Minkowski and Gregory Ricci-Curbastro.
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Finally and obviously, we expect to recover the Galilei transformation at low velocities,

ct = γ(ct′ + βz′)→ ct′ and z = γ(z′ + βct′)→ z′ + v0t
′ . (9.52)

That is, the limit is obtained by γ → 1 and γβc→ v0, such that,

β =
v0

c
. (9.53)

The Lorentz transform from an inertial system S to another S′ is,

t′ = γ
(
t− v0

c2 z
)

and z′ = γ(z − v0t) or (9.54)

t = γ
(
t′ + v0

c2 z
′) and z = γ(z′ + v0t

′) .

9.1.6 The Lorentz boost

In this section we will construct the Lorentz transform from infinitesimal generators
[48]. To begin with we introduce 6 fundamental matrices. The matrices,

Kk ≡


 0 êk

êk 03


 , (9.55)

with the unit vectors êk = êx, êy, êz generate linear boosts and the matrices,

Sk ≡


0 0

0 Sk


 with Sx ≡ êzê

†
y−êyê

†
z , Sy ≡ êxê

†
z−êzê

†
x , Sz ≡ êyê

†
x−êxê

†
y ,

(9.56)
generate spatial rotations around the 3 Cartesian axes. We note that the squares of
all matrices Sk and Kk are diagonal and that,

[Si, Sj ] = εijkSk , [Si,Kj ] = εijkKk , [Ki,Kj ] = −εijkSk . (9.57)

Example 98 (Actions of the matrices Kk and Sk): For example, the oper-
ation

(x′µ) = (I4 +Kz)
µ
ν(xν) =

 1 êz

êz I3

ct
r


transports a space-time point (ct, r) with light velocity along the z-axis to an-
other point, (ct′, r′) = (ct+ z, r + ctêz). And the operation

(x′µ) = (I4+Sz)
µ
ν(xν) =

1 0

0 I3 + Sz

ct
r

 =


ct

1 −1 0

1 1 0

0 0 1

 r

 =


ct

x− y

y + x

z


transports a space-time point (ct, r) around the z-axis to another point, (ct′, r′) =

(ct, x− y, y + x, z).
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The Lorentz boost can now be written as,

Λ = eL with L = −~ω · S− ~ζ ·K

where S ≡
(
Sx Sy Sz

)

and K ≡
(
Kx Ky Kz

)
. (9.58)

We verify that,
det Λ = det eL = eTr L = ±1 . (9.59)

Example 99 (Lorentz-boost without rotation): For a Lorentz-boost without
rotation,

Λ = e−
~ζ·K with ~ζ = êβ tanh−1β ,

we get,

Λ =


γ −γβx −γβy −γβz

−γβx 1 +
(γ−1)β2

x
β2

(γ−1)βxβy
β2

(γ−1)βxβz
β2

−γβy (γ−1)βxβy
β2 1 +

(γ−1)β2
y

β2

(γ−1)βyβz
β2

−γβz (γ−1)βxβz
β2

(γ−1)βyβz
β2 1 +

(γ−1)β2
z

β2

 =

 γ −γ~β

−γ~β I3 + (γ − 1)β̂iβ̂j

 ,

(9.60)

as will be shown in Exc. 9.1.7.6. The Lorentz transform (9.19) into a system

moving along the z-axis follows immediately with βx = βy = 0.

9.1.6.1 The Thomas precession

We consider the circular motion of an electron around a nucleus about the z-axis
subject to a centripetal (Coulombian) force. The nucleus is fixed in the lab frame S,
the electron’s rest frame S′ moves with respect to the lab frame at the instantaneous
velocity v(t) = c~β(t), as illustrated in Fig. 9.4.

Figure 9.4: Circular motion of an electron around a nucleus.

At time t, when the electron’s velocity is ~β(t), the Lorentz transform from S to
S′ is described by [48],

x′(t) = Λboost(~β)x , (9.61)

Note, that the nucleus’ position does not change in the frame S, x(t+ δt) = x(t) = x.

At a later time t + δt, when the electron’s velocity is ~β(t + δt) = ~β(t) + δ~β(t), the
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Lorentz transform,

x′(t+ δt) = Λboost(~β + δ~β)x = Λboost(~β + δ~β)Λ−1
boost(

~β)x′(t) (9.62)

can be expressed as a Lorentz transform from the electron’s system S′ at time t to
the same S′ at time t + δt. From the expression (9.60) for a Lorentz-boost without
rotation, setting βz = 0, we get for Lorentz-boost in the xy-plane,

Λ±1
boost(βxêx + βyêy) =




γ ∓γβx ∓γβy 0

∓γβx 1 +
(γ−1)β2

x

β2

(γ−1)βxβy
β2 0

∓γβy (γ−1)βxβy
β2 1 +

(γ−1)β2
y

β2 0

0 0 0 1




. (9.63)

Now, setting the initial position of the electron along the direction ~β(t) = βêx, as
shown in Fig. 9.4, we get,

Λ−1
boost(

~β) =




γ γβ 0 0

γβ γ 0 0

0 0 1 0

0 0 0 1




, (9.64)

and, expanding γ for small velocity changes like,

γ + δγ =
1√

1− (β + δβ)2
' γ + γ3βδβ , (9.65)

we find,

Λboost(~β + δ~β) =


γ + δγ −(γ + δγ)(β + δβx) −(γ + δγ)δβy 0

−(γ + δγ)(β + δβx) 1 + (γ+δγ−1)(β+δβx)2

(β+δβx)2
(γ+δγ−1)(β+δβx)δβy

(β+δβx)2
0

−(γ + δγ)δβy
(γ+δγ−1)(β+δβx)δβy

(β+δβx)2
1 +

(γ+δγ−1)(δβy)2

(β+δβx)2
0

0 0 0 1



'


γ + γ3βδβx −γβ − γ3δβx −γδβy 0

−γβ − γ3δβx γ + γ3βδβx
γ−1
β
δβy 0

−γδβy γ−1
β
δβy 1 0

0 0 0 1

 . (9.66)

Multiplying the matrices (9.65) and (9.66) we get,

ΛTh(~β + δ~β) = Λboost(~β + δ~β)Λ−1
boost(

~β) '




1 −γ2δβx −γδβy 0

−γ2δβx 1 γ−1
β δβy 0

−γδβy −γ−1
β δβy 1 0

0 0 0 1




.

(9.67)
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This represents an infinitesimal Lorentz transformation that, expressing the compo-
nents of δ~β parallel and perpendicular to β by,

δ~β‖ = δ~β·~β
β2

~β and δ~β⊥ = δ~β − δ~β·~β
β2

~β (9.68)

can be written in terms of the matrices S and K as 5,

ΛTh(~β + δ~β) = I− γ−1
β2 (~β × δ~β) · S− (γ2δ~β‖ + γδ~β⊥) ·K

' R(∆~Ω) Λboost(∆~β)

. (9.69)

Here, we defined the commuting infinitesimal boosts and rotations called Wigner
rotations,

Λboost(∆~β) ≡ I−∆~β ·K and R(∆~Ω) ≡ I−∆~Ω · S (9.70)

in terms of velocity and rotation angle,

∆~β ≡ γ2δ~β‖ + γδ~β⊥ and ∆~Ω ≡ γ − 1

β2
~β × δ~β . (9.71)

Clearly, the second line of (9.69) holds to first order in δ~β. Thus, the pure Lorentz

boost (9.62) to the frame with velocity c(~β + δ~β) is equivalent to a boost (9.61) to a

frame moving with velocity c~β, followed by an infinitesimal Lorentz transformation
consisting of a boost with velocity c~∆β and a rotation ∆~Ω.

In summary, we got,

x′(t+ δt) = Λboost(~β + δ~β)x = Λboost(~β + δ~β)Λ−1
boost(

~β)x′(t) (9.72)

= ΛTh(~β + δ~β)x′(t) = R(∆Ω)Λboost(∆~β)x′(t) .

In terms of the interpretation of the moving frames as successive rest frames of the
electron we do not want rotations as well as boosts. Non-relativistic equations of
motion can be expected to hold provided the evolution of the rest frame is described
by infinitesimal boosts without rotations. We are thus led to consider the rest-frame
coordinates at time t+δt that are given from those at time t by the boost Λboost(∆~β)
instead of ΛTh. Denoting these coordinates by x̃′ we have,

x̃′(t+ δt) = Λboost(∆~β)x′(t) (9.73)

= R(−∆~Ω)x′(t+ δt) = R(−∆~Ω)Λboost(~β + δ~β)x .

The rest system of coordinates defined by x̃′ is rotated by R(−∆~Ω) relative to the
boosted laboratory axes x′. If a physical vector G has a (proper) time rate of change

5We note that, for the case ~β(t) = βêx Eq. (9.69) can be written as,

ΛTh = I− γ − 1

β
Szδβy − γ2Kxδβx − γKyδβy ,

which reproduces exactly Eq. (9.67).
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(dG/dτ) in the rest frame, the precession of the rest-frame axes with respect to the
laboratory makes the vector have a total time rate of change with respect to the
laboratory axes of,

(
dG

dt

)

non−rot
=

(
dG

dt

)

rest

+ ~ωTh ×G . (9.74)

with

~ωTh = − lim
δt→0

∆Ω

δt
=

γ2

γ + 1

a× v

c2
, (9.75)

where a is the acceleration in the laboratory frame and, to be precise,
(
dG

dt

)

rest

= γ−1

(
dG

dτ

)

rest

. (9.76)

The Thomas precession is purely kinematical in origin. If a component of acceleration
exists perpendicular to v, for whatever reason, then there is a Thomas precession,
independent of other effects such as precession of the magnetic moment in a magnetic
field.

Example 100 (Circular motion): Assuming a constant circular motion about
the z-axis, as parametrized by v = rθ̇êθ and a = −rθ̇2êr = −θ̇vêr with θ̇ =
const, we find,

~ωTh =
γ2

γ + 1

a× v

c2
=

γ2

γ + 1

−θ̇v2

c2
êz = − γ

2β2

γ + 1
θ̇êz = −(γ − 1)θ̇êz .

9.1.6.2 Spin-Orbit coupling

For electrons in atoms the acceleration is caused by the screened Coulomb field. Thus
the Thomas angular velocity is,

~ωTh ' −
1

2c2
r× v

m

1

r

dV

dr
= − 1

2m2c2
L

1

r

dV

dr
. (9.77)

It is evident that the extra contribution to the energy from the Thomas precession
reduces the spin-orbit coupling, yielding,

U =
−ge
2mc

~S · ~B +
(g − 1)

2m2c2
~S · L1

r

dV

dr
. (9.78)

9.1.7 Exercises

9.1.7.1 Ex: Contravariant partial derivation

Show that the partial derivative by the contravariant coordinate xµ is covariant.

9.1.7.2 Ex: Time dilatation

Proxima Centauri, which is the closest star to our solar system with a distance of 4.22
light-years from Earth, is a so-called Red Dwarf of class M. At its 34th anniversary,
Peter embarks on a journey from Earth to this star. His spaceship flies with a speed
of 250000 km/s. How old is Peter when he arrives? What is the age of Peter’s twin
brother, who remained on Earth at this time?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_MetricaMinkowski01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_DilatacaoTemporal01.pdf
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9.1.7.3 Ex: The twin paradox

Explain the twin paradox by applying the Lorentz transform to the twin traveling on
a round-trip to α-Centauri assuming a fixed distance between Earth and α-Centauri.

9.1.7.4 Ex: Muons

In the upper layers of the atmosphere (at 20 km altitude) about 250 muons are gen-
erated per square meter and second. After that they move with 99.98% of the speed
of light towards the surface of the Earth. Muons at rest have a lifetime of 1.52µs.
a. Assuming that there were no time dilatation, how many muons would arrive per
square meter and second at the surface of the Earth?
b. How many muons actually reach the surface of the Earth?

9.1.7.5 Ex: Atomic clocks

In 1971 atomic clocks were taken by a high-speed aircraft to measure time dilatation
directly. How long must an aircraft fly at a speed of 3000 km/h, so that the airplane’s
clock and a clock fixed on Earth show, due to time dilatation, a difference of one
second?

9.1.7.6 Ex: Lorentz-boost without rotation

Derive the matrix (9.60) for the Lorentz-boost without rotation to a system moving
in arbitrary direction.

9.2 Relativistic mechanics

9.2.1 The inherent time of an inertial system

The key to constructing relativistic theories is to find the quantities behaving well
under Lorentz transformations. We have already defined some quantities in (9.32)
and (9.33). But we need more to establish a relativistic mechanics. In the following
sections we will analyze how other kinematic variables (velocity, momentum, and
acceleration) fit into four-vectors. Since these variables are defined through time
derivatives, an accurate characterization of the notion of time intervals is necessary.

We consider an object following a space-time trajectory. As the evaluation of trav-
eled distances and elapsed time intervals depends on the observer’s inertial system,
there is no universal parametrization. But there is at least one ’natural’ parametriza-
tion that all observers can agree on, which is the proper time τ , which is the duration
of time felt by the object itself. Due to time dilatation, an observer sitting in some
inertial system and measuring the motion of the object with the old-fashioned New-
tonian tri-velocity v(t) infers, that the relation between his own time t and the proper
time τ of the particle is given by,

dt

dτ
= γv ≡

1√
1− v2/c2

> 1 . (9.79)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_DilatacaoTemporal02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_DilatacaoTemporal03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_DilatacaoTemporal04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_DilatacaoTemporal05.pdf
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Example 101 (Common velocity under Lorentz transformation): We
could define the common velocity of a body via the distance r covered in a time
interval t measured in the laboratory system (in relation to which the body
travels with this velocity),

(vµ) ≡ d(rµ)

dt
=

(
c

v

)

However, the contraction of this 4-vector is not a Lorentz invariant because,

vµv
µ = c2 − v2 6= c2 − v′2 = v′µv

′µ .

On the other hand, the notion of proper time allows us to define a true quadri-
velocity. We assume that in some inertial system, the body follows the trajectory
rµ(τ). Then the quantity,

uµ ≡ γvvµ = γv
drµ

dt
= γv

dτ

dt

drµ

dτ
=
drµ

dτ
that is (uµ) =

(
γvc

γvv

)
, (9.80)

called proper velocity is a Lorentz invariant, since,

uµu
µ = c2 . (9.81)

A useful illustration of the relation between space and time, as proposed by
Minkowski, is exhibited in Fig. 9.5. The inner region of the cone represents the space-
time points in a lab frame that a moving body can reach within a given time interval.
The cone’s surface are the points that can be reaches traveling at light speed, and the
outer region remains inaccessible.

space

time(a)

space

time(b)

Figure 9.5: Two-dimensional illustration of Minkowski space-time. The cones delimits acces-
sible (inside) from inaccessible (outside) regions. The red curve in (a) represents a possible
trajectory for a moving body. The hyperboloid in (a) represents the hyperspace where a
system S′ with its proper velocity v is found after a time τ elapsed in the system S′. The
hyperboloid in (b) represents the hyperspace of ’space’-like intervals according to (9.33).
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9.2.2 Adding velocities

The Lorentz transformation from system S′ moving with respect to another system
S with the relative velocity v0 must be applied to the proper velocity,

 γv′c

γv′v
′


 = (Λµν)


γvc
γvv


 =


 γ −γβ
−γβ γ




γvc
γvv


 = γvγ


 c− βv
−βc+ v


 , (9.82)

where we denote γ ≡ γv0 . Eliminating γv′ and resolving by v′ we get,

v′ =
v − v0

1− v0v/c2
. (9.83)

Obviously, the speed of light can not be exceeded. The velocity in the system S′

is limited to −c ≤ v′ ≤ c, even if v = c. Similar calculations can be made for the
two transverse directions, and we obtain the general formula reproduced here without
proof,

v =
v′ + v0

[
γ(1 + v0 · v′/v2

0)− v0 · v′/v2
0

]

γ(1 + v0 · v′/c2)
. (9.84)

We calculate in Exc. 9.2.7.1 an example of relativistic addition of velocities.

9.2.3 Relativistic momentum and rest energy

The relativistic linear momentum is given by,

pµ ≡ muµ = mγvv
µ or (pµ) =

(
E/c

p

)
. (9.85)

We will show in Exc. 9.2.7.2 that an identification of the momentum pµ with mvµ

would be inconsistent with the principle of momentum conservation and the principle
of relativity. For zero velocity of the particle, v = 0, the first line of the expression
(9.85) is the famous Einstein equation on the equivalence of mass and energy,

E = mc2 . (9.86)

Thus, the mass is nothing more than the energy of the particle in its rest frame.
Transforming into the rest frame, we have:

p′µp
′µ =

∥∥∥∥
(
E/c

p

)∥∥∥∥
2

=

∥∥∥∥
(
mc

0

)∥∥∥∥
2

= pµp
µ , (9.87)

yielding,

E =
√
m2c4 + c2p2 = mc2

√
1 + γ2

v

v2

c2
= γvmc

2 . (9.88)

The kinetic energy in the non-relativistic limit follows from a Taylor expansion of
the expression (9.88) for low velocities,

Ekin ≡ E −mc2 = mc2(γv − 1) ' p2

2m
− p4

8m3c2
. (9.89)

Do the Exc. 9.2.7.3.
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Example 102 (Compton scattering): Here we consider the interaction of a
photon with an electron. The electron has the rest mass me. Thus, transforming
to the rest frame, we find its energy via, (pe)µ(pe)

µ = E2
e/c

2 − p2 = m2
ec

4. The
photon has no rest mass. Thus, transforming to the rest frame, we find its
energy via, (pγ)µ(pγ)µ = (~k)2 = (~ω)2/c2.

Now we let the photon with energy ~ωi bounce off an electron initially at

Figure 9.6: Scattering of a photon from an electron.

rest. After the collision the photon and the electron move away under angles
of sin θγ , respectively, sin θe, with respect to the collision axis. As shown in
Fig. 9.6, we can choose the collision axis along the z-axis and within the xy-
plane. The photon has changed its energy to ~ωf and its momentum to ~kf ,
the electron now has the momentum pf . For an elastic collision, energy and
linear momentum conservation request,

pµi ≡


Ei/c

pxi

pyi

pzi

 =


~ωi/c+mec

0

0

~ki


!
=


~ωf/c+

√
m2
ec2 + p2

f

−~kf sin θγ + pf sin θe

0

~kf cos θγ + pf cos θe

 =


Ef/c

pxf

pyf

pzf

 ≡ p
µ
f .

Solving the second line by θe and substituting into the fourth,

~ωi
c

= ~ki = pf cos θe + ~kf cos θγ = pf
√

1− sin2 θe + ~kf cos θγ

= pf

√
1−

(
~kf
pf

)2

sin2 θγ + ~kf cos θγ .

Solving this by pf ,

c2p2
f = (~ωi − c~kf cos θγ)2 − (c~kf )2 sin2 θγ = (~ωi)2 − 2~ωic~kf cos θγ + (c~kf )2

= (~ωi)2 − 2~ωi~ωf cos θγ + (~ωf )2 .

Inserting this result into energy conservation,

~ωi+mec
2 = ~ωf+

√
m2
ec4 + c2p2

f = ~ωf+
√
m2
ec4 + (~ωi)2 − 2~ωi~ωf cos θγ + (~ωf )2 .

Solving this by ωf ,

hc

λf
= ~ωf =

1

(1− cos θγ)/mec2 + 1/~ωi
,

or defining the Compton wavelength of the electron,

λC ≡
h

mec
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we find for the wavelength of the scattered photon,

λf = λi + λC(1− cos θγ) .

Other examples of relativistic collisions will be studied in Excs. 9.2.7.4 to 9.2.7.6.

9.2.4 Relativistic Doppler effect

We have seen at the example of sonic waves, that the magnitude of the Doppler effect
depends on who moves with respect to the medium: the source or the receiver. Elec-
tromagnetic waves, however, propagate in empty space, that is, there is no material
medium, ether, or wind. According to Einstein’s theory of relativity, there is no abso-
lute motion and the propagation velocity of light is the same for all inertial systems.
Therefore, the classical theory of the Doppler effect can not apply to electromagnetic
waves.

By the fact that the vector kµ given by,

kµ ≡ pµ

~
that is (kµ) =

(
ω/c

k

)
(9.90)

is a space-time vector,
kµk

µ = ω2/c2 − k2 = 0 , (9.91)

we know that this vector transforms like,


ω/c

k


 = (Λµν)−1


ω
′/c

k′


 =


 γ γβ

γβ γ




ω
′/c

k′


 (9.92)

=


γ

ω′

c + γβk′

γβ ω
′

c + γk′


 =

ω′

c
γ(1 + β)


1

1


 ,

such that,

ω = ck = ω′

√
1 + β

1− β = γω′(1 + β) . (9.93)

Including the transverse motion, we obtain

ω = γω′
(

1 +
v0 · v
vc

)
, (9.94)

where v0 is the speed of the source. It is interesting to note that, even in case of a
purely transverse motion v0 · v = 0, we observe a Doppler shift.

Example 103 (Doppler effect on a moving laser): We now consider a light
source flying through the lab S, for example, a laser operating at a frequency
ω′, which is well-defined by an atomic transition of the active medium. A
spectrometer installed in the same rest frame S′ as the laser will measure just this
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frequency. We now ask, what frequency would be measured by a spectrometer
installed in the lab frame. The classical response has already been derived for a
moving sound source,

ω′ = ω − kv = ω − ω

c
v =

ω

1 + v
c

,

with k = ω/c. Because of time dilatation, we need to multiply by γ,

ω′ =
γ−1ω

1 + v
c

= ω

√
1− β
1 + β

' ω
(

1± v

c
+

v2

2c2

)
.

The above example shows that, for non-relativistic velocities, one can distinguish
the first-order Doppler effect from the relativistic Doppler effect due to time dilatation,

ω′ ' ω ± kv + 1
2ωβ

2 . (9.95)

We will study the Doppler effect for the case of ultracold atoms in Excs. 9.2.7.7 to
9.2.7.9.

9.2.5 Relativistic Newton’s law

The relativistic form of Newton’s law,

F =
dp

dt
, (9.96)

with the momentum given by (9.85) defines the common relativistic force. However,
because it is derived from the momentum with respect to common time, the common
force F can not be extended to a Lorentz invariant of the type Fµ. In contrast,
Minkowski force defined as,

Kµ =
dpµ
dτ

=
γvdpµ
dt

that is (Kµ) =

(
γvP/c

γvF

)
, (9.97)

is covariant. Nevertheless, we will often be interested in the common force F acting
on moving bodies as measured in a laboratory frame.

The work exerted on a particle increases its kinetic energy, such that,

W ≡
∫

F · dl =

∫
dp

dt
· dl =

∫
dp

dt
· v dt =

∫
d

dt
(γvmv) · v dt (9.98)

=

∫
(γ3
vmv̇) · v dt =

∫
mc2

dγv
dt

dt =

∫
dE

dt
dt = Efinal − Einitial .

Unlike the first two Newton laws, the third one (actio = reactio) does not apply
in the relativistic regime. Indeed, the simultaneity of ’actions’ and reactions’ in the
forces that two distant bodies A and B exert on each other depends on the velocity
of the observer.
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9.2.6 Uniform acceleration

9.2.6.1 Rindler coordinates

In special relativity, a uniformly accelerated particle undergoes a hyperbolic motion
in space-time, for which a uniformly accelerated reference frame in which the par-
ticle is at rest can be chosen as its proper reference frame. We may for example
consider a homogeneous gravitational field. Let us denote the inertial coordinates by
(cT,X, Y, Z) and the hyperbolic coordinates by (ct, x, y, z). These hyperbolic coordi-
nates can be separated into two main variants depending on the accelerated observer’s
position: If the observer is located at time T = 0 at position X = 1/a (with a as
the constant proper acceleration measured by a comoving accelerometer), then the
hyperbolic coordinates are often called Rindler coordinates with the corresponding
Rindler metric.

The worldline of a body in hyperbolic motion having constant proper acceleration
a in the Z-direction as a function of proper time τ an rapidity aτ can be given by,

T = z sinhατ , Z = z coshατ , (9.99)

where z = 1/a is constant and aτ is variable, with the worldline resembling the
hyperbola Z2−T 2 = z2. Sommerfeld showed that the equations can be reinterpreted
by defining z as variable and aτ as constant, so that it represents the simultaneous ’rest
shape’ of a body in hyperbolic motion measured by a comoving observer. By using
the proper time of the observer as the time of the entire hyperbolically accelerated
frame by setting τ = t, the transformation formulas between the inertial coordinates
and the hyperbolic coordinates are consequently,

T = z sinh at , X = x , Y = y , Z = z cosh at (9.100)

with the inverse

t =
1

a
ar tanh

T

X
, x = X , y = Y , z =

√
Z2 − T 2 . (9.101)

Differentiated and inserted into the Minkowski metric ds2 = −dT 2+dX2+dY 2+dZ2,
the metric in the hyperbolically accelerated frame follows,

ds2 = −(αx)2dt2 + dx2 + dy2 + dz2 . (9.102)

9.2.7 Exercises

9.2.7.1 Ex: Adding velocities

Imagine an array of flash lamps at rest in the system S. The lamps are aligned at
distances of ∆s = 10 m from each other. The array extends over a distance of many
light-years. Now, the lamps are flashed successively (from left to right), so that the
light seems to move to the right.
a. At what time interval ∆t two adjacent lamps need to flash in order to generate an
apparent velocity of v1 = 1.2c?
b. An inertial system S′ moves relative to S with velocity v2 = −0.56c in opposite
direction to that of the motion of the flashes. At what velocity the flashes seem to be
moving in the system S′?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_AdicaoVelocidade01.pdf
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Figure 9.7: (code) Rindler coordinates.

9.2.7.2 Ex: Covariant momentum

Show that an identification of the momentum pµ with mvµ would be inconsistent
with the principle of momentum conservation and the principle of relativity.

9.2.7.3 Ex: Covariant momentum

Show that an the space-time acceleration is necessarily perpendicular to the space-
time velocity.

9.2.7.4 Ex: Inelastic collision

A particle of mass m whose total energy is twice its rest energy collides with an
identical particle at rest. If they stick together, what is the mass of the resulting
particle compound? What is its velocity?

9.2.7.5 Ex: Relativistic collision

Consider a relativistic completely inelastic frontal collision of two particles moving
along the x-axis. Both particles have mass m. Before the collision, an observer A
sitting in an inertial frame, notices that the masses move with the same constant
velocities but in the opposite direction, that is, the particle 1 moves with velocity v
and the particle 2 moves with velocity −v. According to another observer B, however,
particle 1 is initially at rest.
a. Determine the velocity v′x of particle 2 measured by observer B before collision.
b. Find the velocities vA and v′B of the particle resulting from the collision, measured,
respectively, by the observers A and B.
c. Use the relativistic mass-energy conservation and calculate the mass M of the
particle resulting from the collision.

9.2.7.6 Ex: γ-rays

γ-rays produced by paired annihilation exhibit considerable Compton scattering.
Consider a photon produced with the energy m0c

2 by the annihilation of an elec-

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Relativity_RindlerCoordinates.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_MecaRela01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_MecaRela02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_ColisaoRela01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_ColisaoRela02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_GammaRays.pdf
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tron and a positron, where m0 is the rest mass of the electron. Suppose that this
photon be scattered by a free electron and that the scattering angle is θγ , as shown
in Fig. 9.6.
a. Find the maximum possible kinetic energy for the recoiling electron.
b. If the scattering angle were θγ = 120◦, determine the photon energy and the kinetic
energy of the electron after the scattering.
c. If θγ = 120◦, what is the direction of motion of the electron after the scattering
with respect to the direction of the incident photon?

9.2.7.7 Ex: Second order Doppler shift

The second order Doppler shift comes from the relativistic dilation of time. Periodic
events occurring in a moving inertial system appear dilated to an observer in an-
other system. Consider a strontium atom, which has a resonance at the wavelength
λ = 461 nm, located inside a resonant laser beam from which it absorbs and reemits
photons.
a. Assume the atom initially at rest. What will be it’s velocity after having absorbed
a single photon?
b. Calculate the first and second order Doppler shift for the remitted photon as a
function of the emission direction.

9.2.7.8 Ex: Recoil- and Doppler-shift upon photon absorption

Derive the expressions for the recoil- and Doppler-shift upon the absorption of a pho-
ton of frequency ωi by an atom with the initial velocity vi using relativistic mechanics.

9.2.7.9 Ex: Recoil- and Doppler-shift upon photon scattering in rela-
tivistic mechanics

Derive the expression for the recoil- and Doppler-shift upon the absorption and ree-
mission of a photon of frequency ωi by an atom with the initial velocity vi using
relativistic mechanics. Discuss the particular case, vi = 0.

9.3 Relativistic electrodynamics

9.3.1 Relativistic current and magnetism

To begin with, we introduce the space-time current density by,

(jµ) ≡
(
c%

j

)
. (9.103)

This notation allows us to formulate the continuity equation as,

∂µj
µ = 0 . (9.104)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_ColisaoRela03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_ColisaoRela04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_ColisaoRela05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_ColisaoRela05.pdf
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Example 104 (Electric charge under Lorentz transformation): In order
to convince ourselves that it makes sense to combine charge density and current
as quadri-vectors, we consider a situation in which there are only static charges
with density %0 and has no current: jµ = (c%0 0). Now, in an inertial system
moving at velocity v, the charge density will appear as a current,

(j′µ) = (Λµνj
ν) =

(
γc%0

−cγβ%0êz

)
=

(
γ%

−γ%v

)
.

That is, different observers observe different charge densities. The current −γ%v
appears due to the motion of the charge being contrary to the motion of the

observer. Moreover, as the charge density is defined per unit volume and the

volume is compressed due to Lorentz contraction, the observed charge density

γ%0 appears to be increased.

The observation that a moving charge gives rise to a current is not new. But the
fact that we can transform charge into current through a Lorentz transform already
points to the close connection between the phenomena of electricity and magnetism
in the theory of relativity: moving electric fields must generate magnetic fields. We
will study the details of how this happens shortly. But first, let us have a look at
a simple example, where we re-derive the magnetic force purely from the Coulomb
force and a Lorentz contraction.

Example 105 (Electric current under Lorentz transform): We consider a
sample of positive charges +q moving along a conducting wire with velocity +v
and a sample of negative charges −q moving in opposite direction with velocity
−v, as shown Fig. 9.8. If the densities n of positive and negative charges is equal,
the total charge density vanishes, while the currents add up to I = 2nAqv, where
A is the cross section of the wire. We now consider a test particle, also carrying
a charge q, which moves parallel to the wire at some velocity v0. This charge
does not feel any electrical force, because the wire is neutral, but we know that
it experiences a magnetic force. We will now show, how to find an expression
for this force without ever invoking the phenomenon of magnetism. The trick is

Figure 9.8: Illustration of the relativistic origin of the Lorentz force.

to go to the inertial system S′ of the test particle, which means that we have to
transform to a velocity v0. The formula for summing relativistic velocities tells
us, that the velocities of the positive and negative charges are now different,

v± =
v ∓ v0

1∓ v0v/c2
.

But with this transformation comes a Lorentz contraction modifying the density
of the charges. In addition, the different velocities of the positive and negative
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charges cause that, seen from the system S′ (rest frame of the test particle), the
wire is no longer neutral. Let us see how this works: First, we introduce the
density of positively (negatively) charged particles n0 in the system S+ (S−) in
which they are at rest. With this, the charge densities in the lab system S (rest
frame of the wire) are,

%± = qn± = γvqn0 .

In the system S, the wire is neutral because the positive and negative charges
travel at the same velocity, albeit in opposite directions, %+ + %− = 0. Now, in
the system S′, the charge densities are,

%′± = qγv±n0 =
1√

1−
(

v∓v0
c∓vv0/c

)2
qn0

=
−c2 ± vv0√

(c2 − v2)(c2 − v2
0)
qn0 =

(
1∓ v0v

c2

)
γv0γvqn0 ,

Since v− > v+, we have n′− > n′+, and the wire carries negative charge. That
is, the total charge density in the new system is,

%′ = q(n′+ − n′−) = −2v0v

c2
γv0qn± .

But we know that a line of electric charges creates an electric field (using Gauß’
law) of,

~E ′(r) =
%′A

2πε0r
êr = −2v0v

c2
γv0qn±

A

2πε0r
êr ,

where r is the radial direction perpendicular to the wire. This means that in its
rest frame, the particle experiences a force,

F ′ = qE ′(r) = −v0γv0
n±Aq

2v

πε0c2r
,

where the negative sign tells us, that the force is in radial direction toward the
center of the wire for v0 > 0. But if there is a force in one system, there must
also be a force in the other one. Transforming back to the lab system S, we
conclude that even when the wire is neutral, there will be a force,

F =
F ′

γv0
= −v0

n±Aq
2v

πε0c2r
= −v0q

µ0I

2πr
.

But this agrees precisely with the Lorentz force attracting or repelling two neu-

tral current-carrying wires.

This analysis provides an explicit demonstration of how an electric force in one
reference system is interpreted as a magnetic force in another. Another surprising
observation is the following. We are accustomed to think of Lorentz contraction as an
exotic result, which is only important, when we approach the speed of light. However,
the electrons traveling on a wire are very slow, taking about an hour to travel a meter!
Nevertheless, we can easily detect the magnetic force between two wires which, as we
have seen above, can be directly attributed to the length contraction of the electronic
density 6.

6The above discussion needs a small adjustment for real wires. In the rest frame of the wire
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9.3.2 Electromagnetic potential and tensor

The shape of the scalar and vector relativistic potentials (6.104), as expressed by the
laws of Coulomb and Biot-Savart, suggests their combination to a quadri-vector,

(Aµ) ≡
( 1
cΦ

A

)
. (9.105)

with this the gauge transform defined in (6.85) adopts the form,

Aµ → Aµ − ∂µχ . (9.106)

In particular, the Lorentz gauge (6.86) becomes,

∂µA
µ = 0 . (9.107)

Now, let us have a look at the following antisymmetric construction,

Fµν ≡ ∂µAν − ∂νAµ . (9.108)

Obviously, this tensor is invariant under gauge transformation, since,

Fµν → ∂µ(Aν − ∂νχ)− ∂ν(Aµ − ∂µχ) = Fµν − ∂µ∂νχ+ ∂ν∂µχ . (9.109)

which already suggests, that the components of Fµν have something to do with elec-
tromagnetic fields.

In fact, analyzing each component of (9.108) in the light of the equations (6.78),
we find the so-called electromagnetic field tensor,

F̌ = (Fµν) =




0 − 1
cEx − 1

cEy − 1
cEz

1
cEx 0 −Bz By
1
cEy Bz 0 −Bx
1
cEz −By Bx 0




=


 0 − 1

c
~E

1
c
~E (−εmnkBk)


 . (9.110)

where εmnk it is the Levi-Civita tensor.

9.3.2.1 Maxwell’s equations

The dual tensor is,

F̌ = (Fµν) = (1
2ε
µναβFαβ) =




0 −Bx −By −Bz
Bx 0 1

cEz − 1
cEy

By − 1
cEz 0 1

cEx
Bz 1

cEy − 1
cEx 0




=


0 − ~B
~B ( 1

c εmnkEk)


 .

(9.111)

the positive charges, which are ions, are fixed while the electrons move. According to the above
explanation, we might think that this will lead to an imbalance of the charge densities. But this is
not correct. The current is due to electrons injected by the battery into one end of the battery and
drained at the other end in such a way, that the wire remains neutral in the rest frame, with the
electron density accurately compensating the ionic density. In contrast, if we moved to a system in
which ions and electrons had equal and opposite speeds, the wire would appear charged.
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The spatio-temporal Maxwell equations are written,

∂µF
µν = µ0j

ν , ∂µFµν = 0 . (9.112)

The first space-time Maxwell equation incorporates the familiar form of Maxwell’s
first and third equations,

(∂µF
µν) =

(
∂
c∂t ∇

)

 0 − 1

c
~E

1
c
~E (−εmnkBk)


 =




1
c∇ · ~E

− 1
c2

∂
∂t
~E −∇ · (εmnkBk)




ᵀ

(9.113)

=




1
c∇ · ~E

− 1
c2

∂
∂t
~E +

(
εmkn

∂
∂xmBk

)




ᵀ

=




1
c∇ · ~E

− 1
c2

∂
∂t
~E +∇× ~B




ᵀ

= µ0


cρ

j




ᵀ

= (µ0j
ν) ,

using the definition of the vector product,

(a× b)k = εmnkambn . (9.114)

The second space-time Maxwell equation incorporates Maxwell’s second and fourth
equations. With the definition of the Levi-Civita tensor, we can rewrite the equation
as,

εµνκλ∂κFµν = ∂κFµν + ∂µFνκ + ∂νFκµ = 0 . (9.115)

This form satisfies the requirement of cyclical permutability and also takes into ac-
count the fact, that all indexes must be different. If two indexes are equal, for exam-
ple, µ = κ, we would have ∂κFµµ + ∂µFµκ + ∂µFκµ. This expression is certainly zero
because the field tensor is antisymmetric, Fµν = −F νµ.

9.3.3 Lorentz transformation of electromagnetic fields

The rapid motion of the electron within the electrostatic field ~E of the nucleus pro-
duces, according to the theory of relativity, a magnetic field ~B′ in the reference frame
of the electron. In atomic physics 7 we learn that this field can interact with the spin
of the electron, thus giving rise to a considerable energy shift called the fine structure
of the atomic spectrum. We calculate the interaction energy in the following.

In relativistic mechanics defined by the metric (9.3) and the Lorentz transform
(9.19) the Maxwell field tensor is given by (9.110). With this we can calculate the
field transformed into an inertial system propagating along the z-axis,

F ′µν = ΛµαF
αβΛ ν

β =


0 − γ

c
Ex + γβBy − γ

c
Ey − γβBx − 1

c
Ez

γ
c
Ex − γβBy 0 −Bz −γ β

c
Ex + γBy

γ
c
Ey + γβBx Bz 0 −γ β

c
Ey − γBx

1
c
Ez γ β

c
Ex − γBy γ β

c
Ey + γBx 0

 .

(9.116)

7See script on Quantum mechanics (2023).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumMechanicsScript.pdf
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Using v = vzêz, that is βx = 0 = βy and βz = β, we find,

~E ′ =




E ′x
E ′y
E ′z


 =




γEx − βzcγBy
γEy + βzcγBx

Ez


 =




γEx + γcβyBz − γcβzBy − γ2

γ+1βx
~β · E

γEy + γcβzBx − γcβxBz − γ2

γ+1βy
~β · E

γEz + γcβxBy − γcβyBx − γ2

γ+1βz
~β · E




(9.117)

~B′ =




B′x
B′y
B′z


 =




γBx + βz
c γEy

γBy − βz
c γEx

Bz


 =




γBx − γ βyc Ez + γ βzc Ey −
γ2

γ+1βx
~β · B

γBy − γ βzc Ex + γ βxc Ez −
γ2

γ+1βy
~β · B

γBz − γ βxc Ey + γ
βy
c Ex −

γ2

γ+1βz
~β · B


 .

yielding,

~E ′ = γ(~E + c~β × ~B)− γ2

γ + 1
~β(~β · ~E)

~B′ = γ( ~B − 1
c
~β × ~E)− γ2

γ + 1
~β(~β · ~B)

. (9.118)

Although having been derived for the special case ~β = βêz, this result holds for
arbitrary velocities, γ → 1, in any direction ~β. At lower velocities the result simplifies
to,

~E ′ ' ~E + c~β × ~B and ~B′ = ~B − 1
c
~β × ~E . (9.119)

The first of these equations is the Coulomb-Lorentz force: In the charge’s rest
frame the Lorentz part of the force has to disappear. The second equation becomes
important only for relativistic velocities. Let us consider, for example, the orbital
motion of an electron within the Colombian field generated by a proton. From the
point of view of the proton, the motion of the electron corresponds to a circular current
producing a magnetic field in the place of the proton, which can be approximated to
first order in v/c by 8,

~B′ ' − v

c2
× ~E . (9.120)

We conclude that magnetism can be seen as a relativistic electrical phenomenon. Do
the Exc. 9.3.7.2.

9.3.3.1 Lorentz force

The spatio-temporal Lorentz force is,

Kµ =
dpµ

dτ
= qFµνuν , (9.121)

using the definition of the proper velocity (9.80) and of the proper momentum (9.85).
Being covariant it is a Minkowski force of the type (9.97). Extracting the spatial

8Note, however, that this derivation does not account for the rotation of electrons reference system
giving rise to the so-called Thomas precession.
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components,

F =
dp

dt
=

dp

γdτ
= q(~E + v × ~B) , (9.122)

Remembering that p = mγv is the relativistic momentum.

The temporal component of the Lorentz force,

dE/c

dt
=
dE/c

γdτ
=
q

c
~E · v , (9.123)

simply informs us, that the kinetic energy mγc2 −mc2 increases under the action of
work, and the only the electric field works.

The spatio-temporal Lorentz force density is,

fu = Fµνjν . (9.124)

From this we obtain the equations,

fu = Fµνjν =


 0 − 1

c
~E

1
c
~E (−εmnkBk)




c%

j


 =


 − 1

c
~E · j

%~E − (εmnkjmBk)


 (9.125)

=


 − 1

c
~E · j

%~E + j× ~B


 =




1
cP

f


 .

9.3.4 Energy and momentum tensor

The meaning of the 4-dimensional energy-momentum tensor is illustrated with the
following matrix,

Tαβ =




density flux flux flux

flux pressure shear shear

flux shear pressure shear

flux shear shear pressure




. (9.126)

The Maxwell stress tensor for an electromagnetic field in the absence of sources is
defined by,

Tµν = 1
µ0

(
FµαF

αν + 1
4FαβF

αβgµν
)
. (9.127)
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In matrix notation this gives,

(Tµν) = 1
µ0

(
FµγgγαF

αν + 1
4
gαγF

γδgδβF
αβgµν

)
= 1

µ0
F̌ ǧF̌ + 1

4µ0

∥∥F̌ (ǧF̌ ǧ)
∥∥ ǧ (9.128)

=

 u 1
c
~S

1
c
~S −(Tmn)



=


u 1

c
Sx 1

c
Sy 1

c
Sz

1
c
Sx −ε0E2

x − 1
µ0
B2
x + 1

µ0
B2 −ε0ExEy − 1

µ0
ByBx −ε0ExEz − 1

µ0
BzBx

1
c
Sy −ε0ExEy − 1

µ0
ByBx −ε0E2

y − 1
µ0
B2
y + 1

µ0
B2 −ε0EyEz − 1

µ0
BzBy

1
c
Sz −ε0ExEz − 1

µ0
BzBx −ε0EyEz − 1

µ0
BzBy −ε0E2

z − 1
µ0
B2
z + 1

µ0
B2


+
(
ε0
2
E2 − 1

2µ0
B2
)

(gµν) ,

with the energy density u = ε0
2 E2 + 1

2µ0
B2, the Poynting vector ~S = 1

µ0

~E × ~B, the

Maxwell stress tensor
←→
T = ε0EmEn + 1

µ0
BmBn − uδmn.

9.3.4.1 Energy and momentum conservation

Using the space-time formalism the energy and momentum conservation laws can be
summarized by,

fµ + ∂νT
µν = 0 and Tµν = T νµ . (9.129)

This can be seen by applying Maxwell’s equations,

Fµνjv + 1
µ0
∂ν
(
FµαF

αν + 1
4FαβF

αβgµν
)

= 0 . (9.130)

In matrix notation we obtain,

 0 − 1

c
~E

1
c
~E −(εmnkBk)


+




∂
c∂tu+ 1

c∇ · ~S
ε0µ0

∂
∂t
~S −∇(Tmn)


 = 0 , (9.131)

and therefore,

(
P/c f

)
+
(
∂
c∂t ∇

)

 u 1

c
~S

1
c
~S −(Tmn)


 =




P
c + ∂

c∂tu+ 1
c∇ · ~S

f + 1
c
∂
c∂t

~S −∇(Tmn)




ᵀ

(9.132)

=


 − 1

c j · ~E + ∂
c∂tu+ 1

c∇ · ~S
ρ~E + j× ~B + ε0µ0

∂
∂t
~S −∇(Tmn)




ᵀ

= 0 .

9.3.4.2 Properties of the energy and momentum tensor

Note however, that in a dielectric medium, the matrix elements can be decomposed
into separate contributions of the radiation field and the medium. Taken by parts the
contributions do not necessarily satisfy the symmetry requirements 9.

9See the Abraham-Minkowski controversy.
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Defining the angular momentum density of the shear via,

Mµνg = Tµνxg − Tµgxν . (9.133)

Conservation of angular momentum means,

∂µM
µνg = 0 . (9.134)

9.3.5 Solution of the covariant wave equation

Inserting into Maxwell’s equations (9.112) the representation of the fields in terms of
potentials (9.108), we calculate,

µ0j
µ = ∂µF

µν = ∂µ(∂µAν − ∂νAµ) = �Aν + ∂ν (∂µA
µ)

0
. (9.135)

The second term disappears in the Lorentz gauge (9.107). Then, the inhomogeneous
wave equation is,

�Aµ = µ0j
µ . (9.136)

Analogously to the three-dimensional Green function (6.99) we can define a four-
dimensional one,

�D(x) ≡ δ(4)(x) (9.137)

with x = r − r′. With the representation of the Dirac function,

δ(4)(x) = 1
(2π)4

∫
d4ke−ık·x , (9.138)

where k · x = kµxµ = ωt− k · r, and the Fourier transform of the Green function,

D(x) = 1
(2π)4

∫
d4kD̃(k)e−ık·x , (9.139)

the equation (9.136) becomes,

[
1

c2
∂2

∂t2
−∇2

]
1

(2π)4

∫
d4kD̃(k)e−ık·x =

1

(2π)4

∫
d4kD̃(k)

(
−ω

2

c2
+ k2

)
e−ık·x

=
1

(2π)4

∫
d4ke−ık·x = δ(4)(x) , (9.140)

that is,

D̃(k) = − 1

k · k . (9.141)

With this, the Green function becomes,

D(x) = −1
(2π)4

∫
d4k

e−ık·x

k · k . (9.142)

The integral can be solved by contour integration [48], yielding,

Dr,a(r − r′) = 1
2π θ(±ct∓ ct′)δ[(r − r′)2] , (9.143)
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where the index ’r’ refers to retarded and ’a’ to advanced. Finally the solution of
inhomogeneous wave equation is,

Aµ(r) = Aµr,a(r) + µ0

∫
d4r′Dr,a(r − r′)jµ(r′) , (9.144)

where Aµr,a(r) are the solutions of the homogeneous wave equation for an incoming,
respectively, outgoing wave.

The radiation fields are defined by the difference of the incident and outgoing
fields. Thus, the vector potential of the radiation is,

Aµrad(r) = Aµout(r)−Aµin(r) = µ0

∫
d4r′D(r − r′)jµ(r′) , (9.145)

with D(x) ≡ Dr(x)−Da(x).
We can generalize the parametrization of 4-current by,

jµ(r) = ec

∫
dτuµ(τ)δ(4)[r − r′(τ)] . (9.146)

By inserting this current into (9.144) we obtain the Liénard-Wiechert potentials.

9.3.6 Emission of radiation by a charged particle in gravity

Heavy mass = inert mass. Albert Einstein extended this principle, formulating Ein-
stein’s so called strong equivalence principle representing a cornerstone of general
relativity theory: The outcome of any local experiment in a freely falling laboratory
is independent of the velocity of the laboratory and its location in space-time. This
means not only that locally, the effects of gravity are indistinguishable from the effects
of acceleration, but also that every law of nature is the same for free falling particles,
i.e. in homogeneous gravitational fields. This includes the laws of electromagnetism.

In Sec. 9.2.6 we derived the trajectory of a uniformly accelerated particle in space-
time. An interesting question now concerns the emission of radiation in case the
particle is charged. Indeed, according to Einstein’s equivalence principle, seen from
its rest frame the charge should not radiated, while seen from an accelerated observer,
it should.

The apparent paradox can be solved within the framework of special relativity.

9.3.7 Exercises

9.3.7.1 Ex: Motion in constant fields

In the Newtonian world, electric fields accelerate particles on straight lines and mag-
netic fields make the particles move in circles. Here, we will re-analyze the Coulomb-
Lorentz force in the relativistic framework. The force remains the same, but the
momentum is now p = mγu.
a. Consider a constant electric field ~E = E êx without magnetic field.
b. Consider a constant magnetic field ~B = Bêz without electric field.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_EletroRelativista01.pdf
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9.3.7.2 Ex: Electric and magnetic dipole moment of moving dipoles

The electric dipole moment d and the magnetic dipole moment ~µ of a particle in
its rest frame will appear in a lab frame through which the particle is moving with
velocity v as,

d′ = d + 1
c2 v × ~µ and ~µ′ = ~µ− 1

2v × d .

Verify this for a particle with a purely magnetic dipole moment via a Lorentz trans-
form using by the following procedure:
a. Derive the Lorentz transform from a rest frame S, flying through the lab frame S′

into arbitrary direction ~β, back into the lab frame for (i) the charge-current density
quadrivector, (ii) the time-position quadrivector, and (iii) a volume element using the
generalized Lorentz boost (9.60).
b. Parametrize the electric and magnetic dipole moment by appropriate charge and
current densities, e.g. assuming two equal charges dislocated in opposite directions of
the z-axis, respectively, a circular current in the xy-plane.
c. Apply the Lorentz transform to the electric dipole moment by transforming all
quantities of the defining formula. (It is convenient to choose βy = 0.)

9.4 Lagrangian formulation of electrodynamics

9.4.1 Relation with quantum mechanics

In classical and relativistic mechanics we learn to deal with masses and in electro-
dynamics with charges and with fields and electromagnetic waves. We will show in
Sec. 9.4.2.1 how electrodynamics can be integrated into the classical and relativistic
mechanics by the prescription of minimal coupling,

pµ → pµ − qAµ . (9.147)

Revolutionary discoveries in the early twentieth century culminated in the develop-
ment of quantum mechanics, where we learned to accept that the microscopic world
works differently. On one hand, massive particles have undulating properties; they
can diffract and interfere. On the other side, light has corpuscular properties; it con-
sists of indivisible energy packets called photons. Fortunately, classical theories can be
incorporated into quantum mechanics by canonical procedures called first and second
quantization.

9.4.1.1 Treatment of massive particles in quantum mechanics

In quantum mechanics we learn 10 that matter propagates like a scalar wave (in
contrast to electromagnetic waves, which are vectorial). Consequently, in quantum
mechanics, massive particles are described by wavefunctions obeying wave equations.
Slow particles obey the Schrödinger equation, whereas bosonic relativistic particles
obey a wave equation called Klein-Gordon equation and fermions obey the Dirac

10See script on Quantum mechanics (2023).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_EletroRelativista02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumMechanicsScript.pdf
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equation. The Schrödinger and Klein-Gordon equations are obtained from a simple
prescription for canonical quantization:

pµ → ı~∂µ . (9.148)

Obtaining the Dirac equation is a bit more involved.

9.4.1.2 Quantization of the electromagnetic field

We also learn in quantum mechanics 11 that light consists of indivisible energy packets.
This fact is taken into account, by dividing space into modes that can be filled with
discrete numbers of photons. Each mode is treated as a harmonic oscillator. Quantum
field theories explain, how we must quantize non-radiative electric and magnetic fields.

These topics will not be covered in this course.

9.4.2 Classical mechanics of a point particle in a field

For a system with m degrees of freedom specified by generalized coordinates q1, .., qm
and the generalized velocities q̇1, .., q̇m the classical action is determined by the La-
grangian L(qi, q̇i) via,

S[qi, q̇i] =

∫
dtL(qi, q̇i, t) . (9.149)

Thus, the action is a functional of the generalized coordinates. According to Hamil-
ton’s least action principle, the dynamics of a classical system is described by equa-
tions that minimize the action, δS = 0. These equations of motion can be expressed
by the Lagrangian in the form of Euler-Lagrange equations,

d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0 . (9.150)

The canonical momentum is given by equation,

pi(qi, q̇i, t) =
∂L
∂q̇i

, (9.151)

and the Hamiltonian is defined by the Legendre transform,

H(qi, pi) = q̇i
∂L
∂q̇i
− L = piq̇i − L(qi, q̇i) . (9.152)

using Einstein’s summing convention. Comparing the differentials of the left with the
one of the right-hand side of this equation,

∂H
∂qi

dqi +
∂H
∂pi

dpi +
∂H
∂t

dt = dH (9.153)

= q̇idpi + pidq̇i −
∂L
∂qi

dqi −
∂L
∂q̇i

dq̇i −
∂L
∂t
dt ,

11See script on Quantum mechanics (2023).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumMechanicsScript.pdf
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we obtain Hamilton’s equations of motion,

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

,
∂H
∂t

= −∂L
∂t

. (9.154)

From these equations it follows, that if the Hamiltonian is independent of a particular
coordinate qi, the corresponding moment pi is constant. For conservative forces, the
Lagrangian and the Hamiltonian can be written as L = T − V and H = T + V , with
T the kinetic energy and V the potential energy 12.

9.4.2.1 Electrodynamic Lagrangian

So far we have focused on free particles or particles confined by scalar potentials. In
what follows, we will address the influence of a magnetic field on a charged particle.
Classically, the force on a charged particle in electric and magnetic fields is given by
the Lorentz force law and the exerted work by Ohm’s law:

dW

dt
= ev × ~E and F = q(~E + v × ~B) , (9.155)

where q denotes the charge and v the velocity. In this case, the generalized coor-
dinates qi ≡ ri ≡ (r1, r2, r3) are precisely the Cartesian coordinates specifying the
position, and q̇i = ṙi = (ṙ1, ṙ2, ṙ3) the velocity of the particles. These equations
of motion are sufficient to describe the dynamics of a system. The force which de-
pends on the velocity and is associated with the magnetic field is quite different from
the conservative forces associated with scalar potentials. Let us now study, how the
Lorentz force appears in the Lagrange formulation of classical mechanics.

With revised these foundations, we will return to the problem of the influence of
an electromagnetic field on the dynamics of a charged particle. Since the Lorentz force
depends on velocity, it can not simply be expressed as a gradient of some potential.
However, the classical trajectory of the particle is still specific to the least action
principle.

The electric and magnetic fields can be expressed in terms of a scalar and a vector
potential as,

~E = −∇Φ− ∂tA and ~B = ∇×A . (9.156)

The Lorentz force is,

F = q

[
−∇Φ− ∂A

∂t
+ v × (∇×A)

]
. (9.157)

We now analyze the x-component,

Fx = q

[
−∂Φ

∂x
− ∂Ax

∂t
+ vy

(
∂Ay
∂x
− ∂Ax

∂y

)
− vz

(
∂Ax
∂z
− ∂Az

∂x

)
+ vx

∂Ax
∂x
− vx

∂Ax
∂x

]

= q

[
−∂Φ

∂x
+ v · ∂A

∂x
− dAx

dt

]
, (9.158)

12Thus, a particle chooses its trajectory in a way to minimize the conversion between kinetic and
potential energy.
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where we used,
d

dt
=

∂

∂t
+ vi

∂

∂xi
. (9.159)

Since the potentials do not depend on the velocity, we can also write,

Fx = q

[
−∂Φ

∂x
+
∂v ·A
∂x

− d

dt

∂v ·A
∂vx

]
= −∂U

∂x
+
d

dt

∂U

∂vx
, (9.160)

introducing the generalized potential,

U ≡ qΦ− qA · v . (9.161)

The corresponding Lagrangian takes the form:

L(ri, ṙi) = m
2 ṙ2 − qΦ + qṙ ·A = m

2 ṙiṙi − qΦ + qṙiAi . (9.162)

The important point is that the canonical momentum

pi =
∂L
∂ṙi

= mṙi + qAi (9.163)

is no longer equal to velocity times the mass, mvi 6= pi, because there is an extra
term!

Using the definition of the corresponding Hamiltonian,

H(ri, pi) = (mṙi + qAi)ṙi − m
2 ṙiṙi + qΦ− q

∑

i

ṙiAi (9.164)

=
(
m
2 ṙi + qAi

)
ṙi + qΦ = m

2 v2 + qΦ .

Obviously, the Hamiltonian has just the familiar form of the sum of kinetic and po-
tential energies. However, to obtain Hamilton’s equations of motion, the Hamiltonian
must be expressed only in terms of the coordinates and the canonical momenta, that
is,

H(ri, pi) =
1

2m
(p− qA)2 + qΦ = qvj

∂Aj
∂ri

+ qΦ . (9.165)

Let us now consider Hamilton’s equations of motion,

ṙi =
∂H
∂pi

=
1

m
(pi − qAi) (9.166)

ṗi = −∂H
∂ri

= − 1

2m

∂

∂ri
(pj − qAj)2 − q ∂Φ

∂ri
.

The first equation reproduces the canonical momentum (9.162), while the second
gives the Lorentz force. To understand how, we need to remember that dp/dt is
not the acceleration: The term dependent on A also varies over time in a rather
complicated way, since it is the field seen by the moving particle.
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Example 106 (Lorentz force from the Lagrangian): Obviously, we can
recover the Lorentz force from the Hamiltonian: Differentiating the canonical
momentum (9.162),

mr̈i = −qȦi + ṗi = −qȦi −
∂H
∂ri

= −qȦi −
∂

∂ri
q

(∑
j

vj
∂Aj
∂ri
− ∂Φ

∂ri

)
= −qȦi + q∇i(A · v)− q∇iΦ .

that is,

mr̈ = −q∇Φ + qv × (∇×A) + q(v · ∇)A− q dA
dt

= −q∇Φ + qv × (∇×A)− q ∂A
∂t

= q~E + qv × ~B

using the rules (9.159) and v × (∇×A) = ∇(A · v)− (∇ · v)A.

Using the Coulomb gauge ∇ · A = 0 the Coulomb-Lorentz force can be derived
from the Lagrangian via the equation (9.162) or from the Hamiltonian via the second
equation (9.166).

9.4.3 Generalization to relativistic mechanics

We now want to generalize the Lagrangian treatment of a particle to relativistic
mechanics. Not all forces known in classical mechanics can be put into a covariant
form. One example is the Newtonian gravitational force, understood as a force acting
at a distance, which is incompatible with the theory of relativity. On the other
side, electrodynamics is automatically Lorentz-invariant. Therefore, let us discuss
the Lagrangian only for two examples: 1. a totally free particle and 2. a particle
under the influence of electromagnetic forces.

Analogously to the classical case, we want to derive, from the principle of mini-
mum action (9.149) Euler-Lagrange type equations (9.150). To put the action into a
Lorentz-invariant form, we go to the particle’s rest frame via t = γτ ,

S[rµ, uµ] =

∫
γL(qµ, uµ, τ)dτ . (9.167)

We note, however, that we must now distinguish co- and contravariant indices to
take account of non-Euclidean metrics. Since S is an invariant scalar, γL must be an
invariant scalar as well. The Euler-Lagrange equations are now,

d

dτ

∂L
∂uµ

− ∂L
∂xµ

= 0 . (9.168)

The ansatz for the Lagrangian,
L ≡ m

2 uµu
µ (9.169)

inserted into the Euler-Lagrange equation gives,

d

dτ
muµ − 0 =

d

dτ
pµ = 0 , (9.170)

which makes sense in the absence of external forces 13.
13We note, that any ansatz L(z) ≡ L(uµuµ) satisfying ∂zL = m

2
is possible. We will show this in

Exc. 9.4.5.1.
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9.4.3.1 Lagrangian relativistic electrodynamics

We now consider a charged particle interacting with an external electromagnetic field
[48]. In relativistic notation the Lorentz force and the Ohm’s law (9.149) become
[compare (9.121)],

mduµ

dτ
= qFµνuν , (9.171)

where m is the resting mass, τ the proper time in the particle’s system, and (uµ) =
(γc, γu) = (pµ/m) its 4-velocity. Following the classical model (9.161) we can make
for the Lagrangian the covariant ansatz [37],

L = Lfree + Lint = m
2 uµu

µ + quµA
µ . (9.172)

The canonical momenta are,

pµ =
∂L
∂uµ

= muµ + qAµ , (9.173)

such that the Euler-Lagrange equations (9.168) result in,

d

dτ
(muµ + qAµ)− ∂

∂xµ
(quνA

ν) = 0 . (9.174)

That is,

Kµ =
d

dτ
muµ =

∂

∂xµ
(quνA

ν)− d

dτ
(qAµ) , (9.175)

which is precisely the Minkowski type Lorentz force.
The total energy is,

Etot = cp0 = c(E + qΦ) , (9.176)

where E is the kinetic energy including the rest mass (9.88). We calculate,

m2uµu
µ = m2c2 = (pµ−qAµ)(pµ−qAµ) = m2u0u

0−(p−qA)2 = E2/c2−(p−qA)2 .
(9.177)

That is,
E2 = (p− qA)2 −m2c2 . (9.178)

In Exc. 9.4.5.3 we show an example for the application of the relativistic electro-
dynamic Lagrangian.

9.4.3.2 Charges and currents interacting with an electromagnetic field

In the case of continuous variables we use Lagrangian densities,

L =
∑

i

Li(qi, q̇i) −→
∫
L(φk, ∂

αφk)d3x . (9.179)

For example, the Lagrangian of the electromagnetic field is [38],

L = T − V = Lfield + Lint = − 1
4µ0

FµνFµν −Aµjµ , (9.180)

but we will not deepen this here.
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9.4.4 Symmetries and conservation laws

Symmetry is a feature of a system conserving specific properties under
some transformation.

For example, the geometry of a system does not change, when we apply a reflection
and the interaction energy between two charges does not change when we switch their
coordinates.

In the Lagrangian formalism we call a quantity (or generalized momentum) con-
served, when the Lagrangian does not depend on the associated coordinate,

L 6= L(qk) =⇒ pk is conserved . (9.181)

We can see this by the Euler-Lagrange equation,

dpk
dt

=
d

dt

∂L
∂q̇k

=
∂L
∂qk

= 0 . (9.182)

Emmy Noether formulated the theorem, that a symmetry transformation, that is,
a transformation that does not change the action,

t→ t+ δt and q→ q + δq , (9.183)

conserves the following quantities:

(
q̇ · ∂L

∂q̇
− L

)
δt− ∂L

∂q̇
· δq . (9.184)

For example, a temporal translation, δt 6= 0 without another transformed coordi-
nate δqα = 0 , ∀α, leaves the total energy,

q̇ · ∂L
∂q̇
− L = H , (9.185)

(known by the Legendre transform) unchanged. The spatial translation, δqα 6= 0 but
δt = 0, leave the linear momentum,

∂L
∂q̇α

= pα , (9.186)

unchanged. We note that in relativistic theory, these two conservation laws are re-
lated. Spatial rotation around an axis ên, defined in Cartesian coordinates by,

r→ r + δ~θ = r + δ(ên × r) , (9.187)

with δt 6= 0, leaves the angular momentum,

∂L
∂q̇
· δ(ên × r) = p · (ên × r) = ên · (r× p) = ên · L = 0 , (9.188)

unchanged.
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symmetry class symmetry invariance conserved quantity

Lorentz homogeneity of time translation in time energy

homogeneity of space translation in space linear momentum

isotropy of space rotation in space angular momentum

discrete T (isotropy of time) time reversal temporal parity

P coordinate inversion spatial parity

C charge conjugation charge parity

internal U(1) gauge transformation electric charge

9.4.5 Exercises

9.4.5.1 Ex: Lagrangian relativistic of a free particle

Show that the Lagrangian L(z) = L(uµu
µ) with L′ = m

2 satisfies the Euler-Lagrange
equation.

9.4.5.2 Ex: Motion of charged particles in a magnetic field

A non-relativistic particle with mass m and charge q be in a static magnetic field,

~B(r) = Bx(x, y, z)êx + By(x, y, z)êy + Bz(x, y, z)êz .

Its Lagrange function is then,

L =
1

2
mv2 +

q

c
v ·A ,

where v is the velocity of the particle and A the vector potential corresponding to
the magnetic field ~B.
a. If A = Ax(x, y, z)êx+Ay(x, y, z)êy +Az(x, y, z)êz is given, what are the Cartesian

components of ~B?
b. Using the formula d

dt
∂L
∂q̇ = ∂L

∂q derive the equations of motion for the Cartesian
components of v.
c. What is the condition for Bx = By = 0 and Bz = B0 to be constant?
d. Now, consider Ax = Ay = 0 and Ay = B0x. What equations of motion for vx, vy,
and vz follow from this?
e. Calculate vx(t), vy(t), and vz(t). Contour conditions be given by vz(t = 0) = v

(‖)
0 ,

vy(t = 0) = 0 and vx(t = 0) = v
(⊥)
0 . Use the abbreviation ω0 = qB0

mc .
f. Calculate x(t), y(t), and z(t) choosing x(t = 0) = y(t = 0) = z(t = 0) = 0. What
is the form of the trajectory that corresponds to this motion?
g. Suppose now that Ax = Ay = 0 and Ay = B(z)x. What is the consequence of this
for Bx, By, and Bz? What are the corresponding equations of motion for vx, vy, and
vz ?
h. Now, let ∂B(z)

∂z = B′ =constant. Discuss the motion equation for vz, inserting as

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_LagrangianoEletron02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_LagrangianoEletron03.pdf
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an approximation for vy(t) and x(t) the solutions of parts (e) and (f). What, under
this circumstance, is the consequence for vz(t)?

9.4.5.3 Ex: Connection between kinetic and canonical momentum and
the Abraham-Minkowski debate

The nonrelativistic Lagrangian that governs the interaction of a particle with electric
and magnetic dipole moment with external electromagnetic fields can be written,

L = m
2 v

2 + ~E · d + ~B · ~µ .

a. Based on the results of Exc. 9.3.7.2 calculate the kinetic and canonical momenta of
a particle with flying at velocity v through a lab.
b. Now, average over a macroscopic number of particles introducing the polarization
~P = 〈∑n dnδ

3(r− ~Sn)〉 and the magnetization ~M = 1
2 〈
∑
n ~µnδ

3(r− ~Sn)〉, and com-
pare the kinetic and canonical momenta with the Abraham and Minkowski expressions
for the linear momentum density.

9.5 Relativistic gravity

The starting point of Einstein’s theory on general relativity is the famous equivalence
principle stating that there is no difference in heavy mass and inert mass, that is,
gravity and acceleration are fundamentally the same. Taking this axiom seriously,
we must accept a series of astonishing corollaries, such as the fact that space-time
is neither Euclidian, nor Minkowskian, but distorted by the presence of mass. Time
and space coordinates are intertwined.

In the following, we briefly recapitulate Minkowskian metrics in Cartesian and
spherical coordinates before introducing Schwarzschild metrics as a special case.

9.5.1 Metric and geodesic equation in curved space-time

Minkowskian metrics in Cartesian coordinates has been introduced in Sec. 9.1.1. In
the following sections, we will briefly recapitulate it and extend it to spherical coor-
dinates before generalizing the metrics to curved space-time.

9.5.1.1 Minkowski metrics

In Cartesian coordinates the line element and tetrad are given by,

ds2 = c2t2 − dx2 − dy2 − dz2 (9.189)

et =
1

c
∂t , ex = ∂x , ey = ∂y , ez = ∂z

et = cdt , ex = dx , ey = dy , ez = dz ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_LagrangianoEletron03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_LagrangianoEletron03.pdf
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and the metric tensor by,

gµν =
∂xα
∂ξµ

∂xα

∂ξν
=




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




. (9.190)

Note that the matrix representation of the metric is defined via,

ds2 = gµνdxµdxν . (9.191)

In spherical coordinates,



t

x

y

z




=




t

r sin θ cosφ

r sin θ sinφ

r cos θ




, (9.192)

the line element and tetrad are given by,

ds2 = c2t2 − dr2 − r2dθ2 − r2 sin2 θdφ2 (9.193)

et =
1

c
∂t , er = ∂r , eθ =

1

r
∂θ , eφ =

1

r sin θ
∂φ ,

and the metric tensor,

gµν =
∂xα
∂ξµ

∂xα

∂ξν
=




1 0 0 0

0 −1 0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ




, (9.194)

with ξµ, ξν = t, r, θ, φ and xα = t, x, y, z. The Minkowski metrics is a generalization
of Euclidian metric to four-dimensional space-time.

9.5.2 Schwarzschild metric

General relativity breaks with the concept of Euclidian space allowing for space-time
to be distorted. The simplest example is the Schwarzschild metric which assumes
a distortion of time and space as a function of the distance from a heavy mass.
Schwarzschild’s solution was the first exact solution of Einstein’s field equations. It
holds on the outside of non-charged non-rotating masses.

Metric and tetrad of Schwarzschild coordinates (t, r, θ, φ) are given by,

c2dτ2 =
(
1− rs

r

)
c2dt2 −

(
1− rs

r

)−1
dr2 − r2dθ2 − r2 sin2 θdφ2 (9.195)

et =
1

c
√

1− rs/r
∂t , r =

√
1− rs

r
∂r , eθ =

1

r
∂θ , er =

1

r sin θ
∂φ ,



406 CHAPTER 9. THEORY OF SPECIAL RELATIVITY

where,

rs ≡
2γNM

c2
, (9.196)

is called the Schwarzschild radius. The metric tensor in free (massless) space is,

gµν =
∂xα
∂ξµ

∂xα

∂ξν
=




1− rs
r 0 0 0

0 −(1− rs
r )−1 0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ




. (9.197)

For r � rs this reduces to the Minkowski metric.

9.5.3 Christoffel symbols for relativistic space-time, geodesic
equation

The Christoffel symbols are defined by,

Γµαβ ≡
∂eα
∂xβ

· eµ =
∂2ξγ

∂xα∂xβ
∂xµ

∂ξγ
. (9.198)

They yields for spherical coordinates,

Γait =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




, Γair =




0 0 −r 0

0 0 0 0

0 0 0 0

0 0 0 0




(9.199)

Γaiθ =




0 0 −r 0

0 0 0 0

0 0 0 0

0 0 0 0




, Γaiφ =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




.

In relativistic space-time the geodesic equation is a curve representing in some
sense the shortest path between two points in a surface. The geodesic line is obtained
by solving the differential equation,

d2xµ

dτ2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0 . (9.200)

Define Einstein tensor, Ricci tensor (see 1.4.3).

9.5.4 Exercises

9.5.4.1 Ex: Space-time metric in spherical coordinates

Write down the space-time metric for Earth in spherical coordinates.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_RelatigravityMetric01.pdf


9.6. FURTHER READING 407

9.6 Further reading

J.D. Jackson, Classical Electrodynamics [ISBN]

D.J. Griffiths, Introduction to Electrodynamics [ISBN]

http://isbnsearch.org/isbn/978-0-471-30932-1
http://isbnsearch.org/isbn/978-1-108-42041-9
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Chapter 10

Appendices to
’Electrodynamics’

10.1 Special topic: Goos-Hänchen shift with light
and matter waves

Newton’s corpuscular light model predicts a lateral shift of a light beam when totally
reflected from an interface to an optically thin medium. Photons leaving the optically
dense medium are reattracted to it by gravitation. The lateral distance covered during
their ballistic flight corresponds to the shift, called Goos-Hänchen shift (GHS). It
seems as if the light beam was reflected at a plane lying behind the boundary within
the region of the evanescent wave (EW). Although the underlying model is incorrect
(although De Broglie himself conjectured that the effect could point towards a finite
photon mass), newer model based on the Maxwell theory also predict an energy
flux within the EW forming within the thin medium. Many unsuccessful attempts
have been undertaken to observe this flux, and it has still not been directly observed
nowadays. The problem is that any probe brought into the EW undermines it and
vanishes the GHS. Goos and Hänchen circumvented the problem by measuring only
the lateral shift in the optically dense medium [40, 41, 15]. The agreement of their
observations with Maxwell theory gives confidence in the existence of the flux.

10.1.1 Evanescent wave potentials

A light field reflected at an angle θ (= 52◦ for Landragin’s dielectric prism) on a
boundary to an optically thin medium is described by

E(r) = E0eıqx−κz , (10.1)

where q = kn sin θ and κ = k
√
n2 sin2 θ − 1. Introducing the Rabi frequency

Ω(r) =

√
σ0Γ

~ω
I(r) =

√
ε0c2σ0Γ

~ω
E0e−κz , (10.2)

the interaction energy reads d · ~E = Ω(r)eıqx. The force F = −∇d · ~E is made of two
contributions. Using the optical Bloch equations, we find the stationary solutions for

409
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the dipole and the dissipative forces [1]

Fdip = − ~∆Ω

4∆2 + 2Ω(r)2 + Γ2
∇Ω(r) , (10.3)

Fdiss =
~ΓΩ2

4∆2 + 2Ω(r)2 + Γ2
∇θ(r) .

Treating the mechanical effects of light analogously to the Laguerre-Gaussian modes.
For LGM the phase gradient is almost parallel with the Poynting vector except for
higher order corrections for the axial component.

The dipole force can be derived from a conservative evanescent potential

V (z) =
Ω2

∆
e−2κz =

πc2Γ

2ω3
I

(
1

∆D1
+

2

∆D2

)
e−2κz .

Apparently, radiation pressure accelerates the atoms not in the direction of the
wavevector, but of the phase gradient [3]. Is this the same as the Poynting vector?
This may lead to observable effects in evanescent waves. Hence, the observation of a
transverse radiation pressure would already prove a Goos-Hänchen shift.

10.1.2 Energy flux in the evanescent wave

An incoming laser beam be expanded after phases

Ei(x) = Eip
∫
f(θ)e−ıxkix0θdθ . (10.4)

The reflected beam then reads

Er(x) = Eip
∫
r(θ)f(θ)e−ıxkix0θdθ , (10.5)

where r(θ) = a−ıb
a+ıb according to the Fresnel equations or r = eiϕ. We assume that we

can linearize the phase ϕ(θ) = ϕ(θ0)+(θ−θ0)∂θϕ(θ0) ≡ χ+θ∂θϕ(θ0). Then equation
(10.5) can be written

Er(x) = Eipe−ıχ
∫
f(θ)e−ı(x−∆xGH)kix0θdθ = Ei(x−∆xGH)e−ıχ , (10.6)

where ∆xGH = 2 cos θ0
kix0

∂θϕ(θ0) = 2
ki
∂θϕ(θ0). The reflected laser beam is parallel

shifted.
Calculations show [80, 57] that the energy flux penetrates the thin medium only

where the transverse profile of the beam shows a gradient. In the regions of constant
intensity the flux is inside the plane of incidence and parallel to the surface. Hence,
the Goos-Hänchen shift is only observable with spatially inhomogeneous beams.

10.1.2.1 Expression for the shift

Let us now estimate the GHS for a prism n1 = 1.5, the Rb D2-line for which λ =

2π/k = 780 nm. The EW penetration depth ζ is given by kζ =
√
n2

1 sin2 θ − n2
2

−1

∆GH

2ζ
=

n2
1n

2
2 sin θ cos2 θ

n4
1 sin2 θ + n4

2 cos2 θ − n2
1n

2
2

. (10.7)
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We assume that the angle of incidence is close to the critical angle θ = θc + ξ =
arcsinn−1

1 + ξ. Near the critical angle the GHS diverges as does the penetration
depth. Hence, the GHS should be measured very close to the critical angle. The
expansion in ξ yields

∆GH

2ζ
=
n1

n2

(
1 + ξ

n2
2n

2
1 − n4

2 − 2n4
1

n3
2

√
n2

1 − n2
2

)
. (10.8)

The Goos-Hänchen shift is proportional to the penetration depth of the evanescent
wave. It has been measured by [15].

10.1.2.2 Goos-Hänchen shift with resonant absorbers

Resonant absorbers have an impact on the evanescent wave and hence on the Goos-
Hänchen shift as has been measured by [75]. Hence, we now consider the presence of
an resonant gas with a small index of refraction, n2 = 1 + n̄, so that

k∆GH

2
=

1√
n2

1 sin2 θ − (1 + n̄)2

n2
1(1 + n̄)2 sin θ cos2 θ

n4
1 sin2 θ + (1 + n̄)4 cos2 θ − n2

1(1 + n̄)2
. (10.9)

To first order in n̄ and ξ

∆GH(n̄, ξ) ≈ An̄√
ξ (Bξ − n̄)

+ ∆GH(n̄ = 0, ξ) . (10.10)

According to [67] (Eq. 4.6),

T = − N |dε1|2
ηε0~|ε1|2

∫
dvW (v)θ(vz)

1

Γ + ηkvz − ı (∆− αkvx)
(10.11)

= −N |d|
2

ηε0~

(
3

2πv2
0

)3/2 ∫ ∞

0

dvze
−3v2z/2v

2
0

∫ ∞

−∞
dvye

−3v2y/2v
2
0

∫ ∞

−∞
dvxe

−3v2x/2v
2
0

1

Γ− ı∆

= −N |d|
2

ηε0~
1√
2

1

Γ− ı∆ .

An effective refractive index variation may be define [67] (Eq. 3.16) with β = iη,

δn = −βT = β
N |d|2√
2ηε0~

1

Γ− ı∆ = ı
N |d|2√

2ε0~
Γ + ı∆

Γ2 + ∆2
. (10.12)

The interesting question is, whether the energy flux in the evanescent wave is
directly observable. The existence of an EW is not questionable. On the contrary it
has become an important in quantum optics, where near-resonant EWs are used for
selective reflection spectroscopy. In cold atom optics, far-off resonant EWs are used
to repel ultracold atoms from surfaces. Does the energy flux related to the GHS leave
any footprints in the atomic cloud (possibly a BEC)? Certainly, one has to stay at a
detuning, where the flux in the evanescent wave satisfies Imk ⊥ Rek, so that there
is no energy transfer. Think about phase shift of the de Broglie wave underneath a
fixed envelope, analogy to geometric phases or the Aharonov-Bohm effect.
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Figure 10.1: (code) Selective reflection Goos.

10.1.3 Imbert-Fedorov shift

A transverse shift should be expected for circularly polarized light or Laguerre-
Gaussian modes. This shift called Imbert-Fedorov shift can be described with the
flux method. The effect should be small, ∆xIF ≈ 0.1 ∆xGH. It has been observed
with microwaves [28] and light [77].

For this case it is interesting that the wavevector k and the flux S are both parallel
to the surface, but orthogonal on each other. The flux is perpendicular to the plane
of incidence.

The symmetry breaking (upward or downward flux) is inherent in the circularly
polarized laser beam [4, 35, 70]. Here the Poynting vector describes a helix about the
optical axis.

For matter waves the index of refraction can be tuned via the particle energy,
which is not possible with light. E.g. if E = V2 > V1, the critical angle for total
reflection is α = 0. Do we expect a Imbert-Fedorov shift for spinor condensates? Is
the plane wave approximation good or should be use real BEC wavefronts?

The total reflection of Laguerre-Gaussian beams has also been studied [68].

10.1.4 Matter wave Goos-Hänchen shift at a potential step

The phase of a BEC could be a sensitive probe for the Goos-Hänchen shift. Here, it
is important that the de Broglie wavelength be longer than the edge of the potential.
Otherwise, the effect is trivial even in the classical particle picture.

Matter waves behave analogously to optical waves, except that the Schrödinger
equation must be used. Consider the situation of a particle moving towards a potential
step at an angle α as shown in Fig. 10.2. The energy of the particle is E > V2 > V1.
The incidence region V1 corresponds to the atom optically thick medium (the de
Broglie wavelength is shorter, the propagation velocity fast, ~k1 =

√
2m(E − V1). V2

is the atom optically thin medium.

Consequently we expect a critical angle αc beyond which the matter wave is totally
reflected,

sinαc =

√
E − V2

E − V1
. (10.13)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Appendix_GoosSelectiveReflection.m
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Figure 10.2: Matter wave refraction at a potential step.

For partial reflection, if the incident wave is described by [80] ψ0 = eıxkx1+ıyky1 , the
reflected and refracted wave are

ψ1 =
cosα−

√
sin2 αc − sin2 α

cosα+
√

sin2 αc − sin2 α
e−ıxkx1+ıyky1 (10.14)

ψ2 =
2 cosα

cosα+
√

sin2 αc − sin2 α
e−ıx
√
k22−k2y1+ıyky1 .

For total reflection,

ψ1 = exp


−ı2 arctan

√
sin2 α− sin2 αc

1− sin2 α


e−ıxkx1+ıyky1 (10.15)

ψ2 =
2 cosα

cosα+ ı
√

sin2 α− sin2 αc
e−x
√
k21y−k22+ıyky1 .

The matter wave Goos-Hänchen shift ∆GH can be estimated by comparing the
matter wave flux J = −i ~

2m (ψ∗∇ψ − ψ∇ψ∗) in the evanescent wave with the flux in
a ∆GH wide strip of the reflected beam. The result [80] is

∆GH

2
=

sinα cos2 α

k cos2 αc
√

sin2 α− sin2 αc
. (10.16)

See [80, 46].
The difficult question is now what the matter wave analogue of the Imbert-Fedorov

shift would be. It is known for relativistic electrons that momentum and velocity
must not necessarily be collinear [29]. How about particles with a real angular orbital
momentum, e.g. the reflection of vortices?

10.2 Special topic: The dilemma of Abraham and
Minkowski

If Minkowski is correct, then as a photon enters an atomic cloud with n > 1, then
the cloud receives a collective momentum in the direction opposite to the photon
propagation [21]. ’Momentum conservation requires then that the medium also has
a mechanical momentum. When a pulse of light enters the medium, the particles in
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the medium are accelerated by the leading edge of the pulse and decelerated by the
trailing edge.’ However, near resonance the refraction index is dispersive. I.e. for blue-
detuning we should expect n < 1 and hence a collective momentum in the direction
of photon propagation.

A picturesque interpretation would be, that the acceleration of the atoms by the
leading or trailing edge of the light pulse is due to the dipole force (real part of sus-
ceptibility). For red (blue) detuning, the atoms are accelerated backwards (forwards)
by the leading edge of the pulse and forwards (backwards) by the trailing edge. In
case, that the cloud absorbs or diffracts photons, a net momentum should remain in
the cloud: [58] ”The propagation of an optical pulse through a transparent dielectric
causes no transfer of momentum to the material, as a positive Lorentz force in the
leading part of the pulse is exactly balanced by a negative Lorentz force in its trailing
part. However, this balance is removed in the present problem because of the attenu-
ation of the light by its interaction with the charge carriers. This causes the leading
part of the pulse at a given time to be weaker than the trailing part and produces a
net negative transfer of momentum to the bulk semiconductor.”

Out side the medium, we know that the photon momentum is,

pout = mc , (10.17)

with m = ~ω/c2. Inside the medium, it is

pin = m
c

η
=
~ω
ηc

. (10.18)

According to Minkowski, we must use m = ~ω/(c/η)2.

10.2.1 Calculation of the momentum of light in a dielectric
medium

Let us consider [65] a plane light wave within a dielectric medium given by ε = η2ε0

and µ = µ0,

~E(r, t) = êxE0 cosω (t− z/c) and ~H(r, t) = êy

√
ε

µ0
E0 cosω(t− z/c) , (10.19)

The energy densities and the energy flows, called ’Poynting vector’, are (taking the
temporal average),

u =
1

2
(~E · ~D + ~B · ~H) = 1

2εE2
0 and S = ~E × ~H = 1

2

√
ε

µ0
E2

0 êz =
c

η
uêz . (10.20)

Therefore, the intensity of a light field, I = |S|, is increased by the dielectric. Rewrit-
ing this in terms of the average number of photons q in a volume V , we obtain for
the energy, ∫

ud3r = 1
2εE2

0V = N~ω . (10.21)

The energy flow of a field of light is equal to the momentum carried by the photons.
For a single photon, we have,

pAbr≡
1

N

1

c2

∫
Sd3r =

~k0

η
. (10.22)
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However, Minkowski’s point of view was,

pMin =
1

N

∫
dV ~D × ~B = η~k0 . (10.23)

The recoil frequency is modified from ~ωrec = ~2k2

2m to ~ωηrec = η2ωrec [21].

10.2.2 Exercises

10.2.2.1 Ex: Einstein box Gedankenexperiment with a BEC

Estimate whether the Einstein box experiment is feasible with a BEC using EIT to
cancel absorption?

10.3 Special topic: Advanced Gaussian optics

The most common mode is a Gaussian laser beam, which is the lowest order Hermite-
Gaussian mode. But other modes are possible.

10.3.1 Laguerre-Gaussian beams

Since several years, attention has been drawn on an unusual feature of light: The
fact that it carries angular momentum when it is in special modes called a Laguerre-
Gaussian mode [89]. Furthermore, while it is well-known that the light polarization
couples to the internal degrees of freedom of atoms, the light angular momentum has
been predicted to couple to external degrees of freedom, i.e. light should be able to
exert a torque to the atomic motion [2, 8, 3, 1, 4, 69]. The torque has been observed
on macroscopic particles [89]. For a hot atomic gas, the Doppler-effect precludes the
direct observation of torsional effect. Recently, phase-conjugation by Non-Degenerate
Four-Wave Mixing (ND4WM) in a Magneto-Optical Trap (MOT) has been used to
indirectly proof that the atoms acquired angular momentum from light [94]. Also,
magneto-optical trap have been constructed based on laser beams [51, 92]. Those
experiments exploited the doonat-shaped intensity distribution of the LG modes, but
did not demonstrate the effect of the torque. And frequency shift [27]. Most traps for
neutral atoms are based on light forces, for example the MOT works with radiation
pressure. Deliberate misalignement of the optical beams within a plane can give rise
to vortex forces and set up a racetrack for the atoms [99, 11].

Laguerre-Gaussian modes can be generated using a Fresnel zone plate.

10.3.1.1 Energy density in Laguerre-Gaussian modes

Besides plane and spherical waves, Gaussian beams and many other functions, the
Laguerre-Gaussian modes (LGM) are a solution of Maxwell’s equations, i.e. they
satisfy ∇2u + k2u = 0, where u is the scalar mode function of the beam [50]. The
vector potential in the Lorentz gauge, Φ = − 1

ık∇ ·A, of those modes in the paraxial

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Appendix_AbrahamMinkowski01.pdf
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approximation [52] is given by [2],

Anm(r) = êxunm(r)e−ıkz

unm(r) = u00(r)
(
r
√

2
w(z)

)|l|
L
|l|
p

(
2r2

w(z)2

)
e−ılφ e

ı(2p+|l|) arctan
z
zR

u00(r) = u0√
z2+z2R

e
− r2

w(z)2 e
− ıkr2z

2(z2+z2R) e
ı arctan

z
zR

, (10.24)

where l = n − m and p = min(n,m). In the following we will use the convenient
cylindrical coordinate system defined in (1.43). Note that, for l = p = 0 we recover a
Gaussian beam, as will be shown in Exc. 10.3.2.3.

10.3.1.2 Poynting vector in Laguerre-Gaussian modes

The energy flux is given by the Poynting vector ~S = µ−1
0
~E × ~B = c2p. | ~S| is the beam

intensity. The energy density is u = 1
2 (ε0|~E|2 + µ−1

0 | ~B|2). The linear momentum and
angular momentum densities and total momenta are defined as,

p =
∫
~℘d3r with ~℘ = ε0

~E × ~B

L =
∫
~̀d3r with ~̀ = r× ~℘

. (10.25)

The cycle-average of the real part of the linear momentum density can in the paraxial
approximation be traced back to the mode function u, respectively, the scalar potential
Φ and the vector potential A using (6.78),

〈~℘〉 =
ε0

2
(~E∗ × ~B + ~E × ~B∗) (10.26)

= ıω
ε0

2
(u∗∇u− u∇u∗) + ωkε0|u|2êz + ωσ

ε0

2

∂|u|2
∂r

êφ .

The components of the linear momentum density are [4],

~℘ = ε0ωk|u|2
[
êz +

rz

z2 + z2
r

êr +

(
l

kr
− σ

2|u|2
∂|u|2
k∂r

)
êφ

]
. (10.27)

The Poynting vector is in general not parallel to the wavevector k, but spirals about
the optical axis.

10.3.1.3 Poynting vector in Hermite-Gaussian modes

This holds even for Hermite-Gaussian beams, as we will show in the following. We
start from the energy density of a LGM in Eq. (10.24). For a Gaussian mode l = p = 0,

|u00(r)| = u0e
−r2/w(z)2

w(z)
. (10.28)
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we find, as will be shown in Exc. 10.3.2.3,

~℘ = ε0ωk|u|2
[
êz +

rz

z2 + z2
r

êr + σ
rzR

z2 + z2
R

êφ

]
. (10.29)

i.e. the radial component vanishes for small beam divergence, the azimuthal compo-
nent is on the order w0/zR ≈ 500 times smaller.

Inserting the full expression of the energy density of a LGM, one finds one term
containing σ and hence predicting spin-orbit coupling. It can be shown that it results
in a dissipative force proportional to lσ [1].

10.3.1.4 Mechanical forces exerted by Laguerre-Gaussian modes

The Laguerre-Gaussian modes are labeled by n and m, where l = n − m and p =
min(n,m), such that 2p+ |l| = m+n. We should recover the Gaussian field for l = 0.
The electric field Elp(r) = εlp(r)eiθlp(r) is,

εlp(r) = ε00

√
p!

(|l|+ p)!

e−r
2/w(z)2

√
1 + z2/z2

R

(
r
√

2

w(z)

)|l|
L|l|p

(
2r2

w(z)2

)
, (10.30)

θlp(r) =
kr2z

2 (z2 + z2
R)

+ lφ+ (2p+ l + 1) arctan
z

zR
+ kz .

With the Rabi frequency defined through,

Ωlp(r) = Ω0
w0

w(z)
e−r

2/w(z)2

(
r
√

2

w(z)

)|n−m|
L
|n−m|
min(n,m)

(
2r2

w(z)2

)
, (10.31)

Using the optical Bloch equations, we find the stationary solutions for the dipole and
the dissipative forces [1],

Fdip = −2~Ωlp(r)
∆

4∆2 + 2Ωlp(r)2 + Γ2
∇Ωlp(r) , (10.32)

Fdiss = 2~Ω2
lp(r)

Γ

4∆2 + 2Ωlp(r)2 + Γ2
∇θlp(r) .

where the gradients are,
∇Ωlp(r) = ... (10.33)

and,

∇θlp(r) = −∇
[
−kz − lφ− kr2z

2(z2 + z2
R)
− (n+m+ 1) tan−1 z

zR

]
(10.34)

=

(
k +

kr2

2(z2 + z2
R)

(
1− 2z2

z2 + z2
R

)
+

(n+m+ 1)zR
z2 + z2

R

)
êz +

krz

z2 + z2
R

êr +
l

r
êφ .

Here we assume the velocity cold enough not to influence the detuning. Otherwise,
we must substitute ∆ → ∆ − v∇θ. At the waist z = 0 and for typical experimental
conditions r, k−1 � zR,

∇θlp(r) ≈ kêz +
l

r
êφ . (10.35)
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We can now write the azimuthal force and the torque in analogy to the radiation
pressure,

Faz = ~
l

r

I

~ω
σ(∆) (10.36)

and,

T = ~
r× l

r

I

~ω
σ(∆) . (10.37)

If we further concentrate on the first Laguerre-Gaussian mode given by l = 1 and
p = 0 or n = 1 and m = 0, and assume low saturation Ω� Γ, we find the force,

Fdiss = −~Γ
[
kêz +

êφ
r

]
e−2r2/w2

0
2r2

w2
0

Ω2
0

4∆2 + Γ2
. (10.38)

It consists of a rotational torque and a component in k direction. For a normal Gaus-
sian field, l = 0. The LG modes have a ring-shaped intensity distribution I(Lag)(x, y).
Therefore, the rotational force depends on the distance from the axis and has a max-
imum at the radius r = w0/2. The dipole force contribution may be neglected close
to resonance, and higher-order contributions from the LG mode as well.

10.3.1.5 Laguerre-Gaussian standing wave

Many experiments are performed within the Rayleigh range, z � zR, where,

Epl(r, φ) = E0fpl(r) e−ilφeı(ωt−kz) , (10.39)

fpl(r) =
Ωpl(r)

Ω0
=
e−r

2
w/2

zR
r|l|w L|l|p (r2

w) .

where we introduced the normalized paraxial distance rw ≡ r
√

2/w0. When such a
Laguerre-Gaussian beam is reflected form a mirror reflected from a mirror it changes
the signs of k −→ −k but not l→ l. We obtain a standing wave, made of ring-shaped
potentials,

∣∣∣fpl(r) e−ılφeı(ωt−kz) + fpl(r) e
−ılφeı(ωt+kz)

∣∣∣
2

= 4f2
pl(r) cos2 kz . (10.40)

At z = 0 the potential reads

Upl =
Ω2

4∆
=
σ0ΓI(x, y)

~ω4∆
=

Ω2
0

4∆
4f2
pl(r) , (10.41)

If in contrast the counterpropagating beam has an inverse angular momentum,

∣∣∣fpl(r) e−ılφei(ωt−kz) + fpl(r) e
ılφeı(ωt+kz)

∣∣∣
2

= 4f2
pl(r) cos2(kz − lφ) , (10.42)

the superposition of a Laguerre-Gaussian beam with a reflected beam gives an az-
imuthally periodic modulation like a circular 1D lattice, which is twisted along the
ẑ-axis. However there is no axial confinement. The intensity resembles a knot of l
worms winding about the ẑ-axis at constant distance like helices. Axial modulation
has to be obtained by an additional plane wave [5].
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Let us calculate the dipole force via F = −∇U ,

∂f2
pl(r)

∂x
= 2fpl(r)

∂r

∂x

∂

∂r

e−r
2
w/2

zR
r|l|w L|l|p (r2

w) (10.43)

= fpl(r)
2 8x

w2
0

[
|l|

2r2
w

− 1

2
−
L
|l|+1
p−1 (r2

w)

L
|l|
p (r2

w)

]

using d
dxL

(m)
n (x) = −L(m+1)

n−1 (x).

10.3.1.6 Creation of Laguerre-Gaussian modes

The polarization of light couples to the internal degrees of freedom of the atoms.
But special light modes, i.e. the higher-order Laguerre-Gaussian (LG) modes, may
carry orbital angular momentum. This angular momentum couples to the external
degrees of freedom of the atoms [2, 8, 3, 1], i.e. the light exerts a torque onto the
atoms. This light force is, however, very weak and in a gas cell with hot atoms,
the Doppler-effect smears out the motional effect. Nevertheless, the torque has been
observed with macroscopic particles [89]. And in a Magneto-Optical Trap (MOT),
phase-conjugation by nondegenerate four-wave mixing has been used to indirectly
prove the transfer of angular momentum to the atoms [94]. Finally, MOTs using
Laguerre-Gaussian laser beams been constructed, however without demonstrating the
effect of the torque [51, 92].

Figure 10.3: Masks for generating Laguerre-Gaussian beams.

The interference of such a mode with a plane wave v yields interference patterns
proportional to,

unm(r)e−ikz + vnm(r)e−ikz ∝ cos

(
−lφ− kr2z

2z2
R

− (m+ n+ 1) arctan
z

zR

)
. (10.44)

At some distance z 6= 0 and for l 6= 0 the patterns have Yin-Yang spiral shape. In-
versely, like in holography, plane waves are diffracted at the spiral patterns in such a
way that they generated a Laguerre-Gaussian mode. This is not an image. Images
are also formed with undiffracted parts of the plane wave. The patterns form a funda-
mental focus at a distance f and subfoci at distances f/2, f/3, .... The fundamental
beam is separated from the undiffracted and higher-order Fresnel modes by a short
focal length lens placed in the fundamental focus. A spiral mask can be generated by
setting z = zR in Eq. (10.44) and filling black the region where r and φ satisfy [45],

cos

(
−lφ− kr2

2zR
− π(n+ 1/2)

)
> 0 . (10.45)
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A special case is defined by l = 0 which reproduces the Fresnel zone plate. The orbital
momentum may be transferred to the atomic motion. Perhaps this also has an effect
on the internal degrees of freedom: The higher-order orbital angular momentum may
couple to higher multipole moments. At reflection on a mirror, the symmetry of the
LG mode is inverted. Therefore, we can build a standing wave LG beam with no axial
force (if the intensities are balanced and the waists matched) and twice the torque.
LG modes can also be created from normal Gaussian modes with an arrangement of
cylindrical lenses.

Figure 10.4: Laguerre-Gaussian beams with various charges.

10.3.1.7 Optical signatures

The interference of a Laguerre-Gaussian mode (LGM) with a phase-matched plane
wave Gaussian beam yields interference patterns shown in the above figure. In the
far-field, the laser beam forms a ring-shaped LGM. Higher-order topological charges
are easily detected in the interference patterns through the occurrence of bifurcations
or by the number of arms spiraling into the center.

Figure 10.5: Bifurcations in a Laguerre-Gaussian beam.

10.3.2 Exercises

10.3.2.1 Ex: Gaussian and Laguerre-Gaussian beams

Convince yourself that the Laguerre-Gaussian beam parametrized in (10.24) corre-
sponds to the Gaussian beam of (7.270).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Appendix_LaguerreGauss01.pdf
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10.3.2.2 Ex: Motion of atoms in Laguerre-Gaussian beams

Programs on the motion of atoms in Laguerre-Gaussian beams.

10.3.2.3 Ex: Linear momentum density for Hermite-Gaussian modes

Compare the linear momentum density for Hermite-Gaussian (7.270) and Laguerre-
Gaussian (10.24) modes.

10.4 Special topic: Superconductivity

At low temperatures some metals completely give up electric resistance. This ef-
fect found by Kammerlingh-Onnes is called superconductivity and has been explained
through Bose-Einstein condensation of electron pairs [25]. But before we outline this
theory let us try a classical approach based on electrodynamics as proposed by Fritz
and Heinz London.

10.4.1 London model of superconductivity and the Meissner
effect

We learned in Sec. 3.3.2 that Ohm’s law is explained within the Drude model by the
fact that the acceleration of electrons in a conductor of conductivity ς by the Coulomb
force of an electric field, mv̇ = −e~E , is spoiled by collisions,

j = ς ~E . (10.46)

Let us now suppose a perfect conductor, where collisions are absent. Then, if we want
the current density j = %v to be constant,

0 = j̇ = %v̇ =
e2ne
m

~E , (10.47)

where % = −ene is the free electron charge density.
Let us now study the behavior of the magnetic field in a conductor. Maxwell’s

equations require,

∇× ~E = − ~̇B and ∇× ~B = µ0j + ~̇D . (10.48)

Assuming ~̇D = 0 the above equations can easily be solved, yielding,

∇2 ~̇B = −µ0nee
2

m
~̇B . (10.49)

This equation describes the behavior of a magnetic field in and around a perfect
conductor.

As we will see in Exc. 10.4.5.1, the solution of Eq. (10.49) predicts an expulsion of
the magnetic field out of the conductor, as illustrated in Fig. 10.6. This effect is termed
the Meissner-Ochsenfeld effect. That is, in the absence of resistivity, a conductor acts
like a perfect diamagnetic (magnetic susceptibility χm = 1). According to the Lenz

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Appendix_.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Appendix_LaguerreGauss02.pdf
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Figure 10.6: Scheme of the Meissner effect. An applied magnetic field is expelled from the
superconductor.

rule, the electrons try to compensate any B-field change by collectively rotating such
as to counteract the change. The electrons rotate in such a way that the B-field
disappears inside the conductor, which leads to an amplification of the field near the
surfaces. As a consequence, permanent magnets are repelled from superconducting
surfaces.

The problem is that the discontinuity of the magnetic field at the periphery of
the superconductor should violate the continuity equation. And in fact, it is ex-
perimentally observed, that the magnetic field is not completely expelled from thin
superconducting films, because the magnetic field penetrates somewhat into the super-
conductor with the penetration depth λL. In order to understand this, it is necessary
to replace the classical Ohm’s law for the current density j and the electric field ~E ,
j = ς ~E , by the London equation.

The London brothers postulates that the magnetic field inside a superconductor
would not only be constant, as predicted by Eq. (10.49) by vanish altogether,

∇2 ~B =
µ0nee

2

m
~B =

1

λL

~B , (10.50)

where we defined the London penetration depth,

λL ≡
√

m

µ0e2ne
. (10.51)

We will study consequences of this equation in Exc. 10.4.5.2.

10.4.1.1 Derivation of the London equation

The London equation can be derived in the framework of quantum mechanics, con-
sidering the superconducting state as a macroscopically extended quantum state de-
scribed by the following wavefunction,

ψ(r) = ψ0e
ıS(r) , (10.52)

where S = S(r) is the phase of the macroscopic wavefunction. ψ2
0 = ne corresponds

to the density of the number of Cooper pairs in the superconductor. The implicit
assumption of a homogeneous density of the Cooper pairs is reasonable, since the pairs
are negatively charged and repel each other. Any imbalance of the density of pairs
would therefore generate an electric field, which would be compensated immediately.
The kinetic momentum operator in the presence of a magnetic field, p = −ı~∇ −
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qA, where A = A(r, t) is the vector potential of the magnetic field, applied to the
wavefunction ψ gives,

mvψ = pψ = (~∇S − qA)ψ . (10.53)

That is,

v =
~
m
∇S − q

m
A . (10.54)

With j = qnev follows immediately,

j =
neq~
m
∇S − neq

2

m
A . (10.55)

This is the London equation.
There are two useful forms of this equation, sometimes referred to as the 1st and

the 2nd London equation,

∂tj =
neq

2

m
~E , (10.56)

and

∇× j =
neq

2

m
~B . (10.57)

The phase S does not contribute to these two equations. It does not contribute to
the first equation, because the phase is only dependent on the position and therefore
constant in time, and it does not contribute to the second equation, because∇×∇S =
0 1.

10.4.2 BCS theory

Many-body effects like superconductivity are not explained by the free electron or
the Bloch model. Superconductivity is characterized by two main features: The
disappearance of electrical resistance in some metals at temperatures below roughly
T ' 10 K, and the expulsion of magnetic flux lines out of the metals, known as
Meissner-Ochsenfeld effect.

According to Bardeen-Cooper-Schrieffer near the edge of the Fermi surface induced
by weak attractive interactions strong correlations in momentum space may build up.
Such interations can be mediated by local polarization traces, i.e. deformations of the
lattice or phonons, imprinted by a moving electron into the metallic lattice and sensed
by a second electron following at a reasonable distance [16, 22]. Thus Fermi gases
are unstable with respect to formation of bound fermion pairs. However, fermion
pairs are not bound in the ordinary sense, and the presence of a filled Fermi sea
is essential. Rather, we have a many-body state. Hence, the interpretation as a
Bose-condensate of Cooper pairs explains some characteristics like the existence of
a delocalized macroscopic wavefunction and the superfluid-like behavior suppressing

1Note that, although the phase does not contribute to the last two formulas, it should not be
neglected! If the phase component were not included, it would mean that the current density without
magnetic field would have to be zero. In reality, however, the phase gradient can also contribute to
the current density, which therefore need not necessarily be zero, i.e. the current density is not zero,
although no magnetic field is applied.
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the electrical resistance. But it oversimplifies and does not account for the important
role of fermionic statistics in the many-body state.

The requirements for Cooper pairing are 1. low temperature to rule out ther-
mal phonons, 2. strong electron-lattice interaction, 3. many electrons just below EF,
4. anti-parallel spins, and 5. antiparallel momentum of the electrons.

Below Tc the motions of the electrons and the ions in the lattice are highly corre-
lated. Cooper pairs are weakly bound, in thermal equilibrium with unpaired electrons,
and have a vanishing total momentum. The typical distance of the electrons in a pair
is roughly 100 nm. Although the fraction of paired electrons is only 10−4, their number
within the volume occupied by a single pair is 106.

Cooper-pairs form through scattering processes. Since all states below the Fermi
surface are occupied, the final momenta must be above kF . In other words, the two
electrons are excited from slightly below E = EF to slightly above E + Eg/2 = EF,
where they profit from the large amount of available empty states allowing for their
high mobility and letting them transit into the strongly correlated pairing state. The
pairs then have the binding energy Eg, because the increase in kinetic energy must
be overcompensated by the potential energy. Such processes smooth out the Fermi
edge even at T = 0, as if the temperature really were at T ' Tc.

An energy gap forms which has just the width Eg. Its origin is understood as
follows: If an electron could slightly change its energy, the pair correlation would
immediately break up and the binding energy Eg liberated. But this energy cannot
be dissipated. Since the binding energy for Cooper pairs is roughly Eg ' 3kBTc, a
thermal noise source must at least provide the energy 3kBTc, which is not possible if
T < Tc. At higher temperatures, the pairing gap narrows and vanishes at T = Tc.
The gap can be spectroscopically probed with IR radiation.

Higher B fields require lower critical temperatures. The critical temperature drops
with rising mass of the ions, Tcm

1/2 = const. This indicates that the vibration of the
lattice ions is crucial for superconductivity.

Magnetic fields trying to penetrate superconducting wires perturb the supercon-
ductivity. This problem can be reduced in type II superconductors, where the size of
the Cooper pairs are reduced and employing superconducting wires containing normal
conducting channels.

The quantitative treatment starts with the two-body Schrödinger equation,

[
− ~

2

2m
(∇2

1 +∇2
2) + V (r1 − r2)

]
Ψ(r1, r2) = (E + 2EF)Ψ(r1, r2) . (10.58)

Here we assume singlet pairing s-wave collisions. Center-of-mass and relative coordi-
nates are now separated, giving,

[
−2

~2

2m
∇2
r + V (r)

]
ψ(r) =

(
E + 2EF −

~2K2

4m

)
Ψ(r) . (10.59)

Transforming into momentum space, assuming that the Fourier transform V (p, p′) =
V −1

∫
e−ı(p−p

′)rV (r)d3r is only nonzero, = V0, inside an energy interval smaller than
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the Debye frequency ~ωD close to the Fermi surface, we finally arrive at the binding
energy of the Cooper-pair,

E = − 2~ωD
e2/VoD(EF) − 1

, (10.60)

where D(EF) ∝ kF is the density of states at the Fermi surface. Estimating V (r) ≈
~2/ma2 the Fourier transform goes like V0 ∝ a, so that kBTBCS ∝ −e−π/2kF |as|.

A full quantum treatment reveals the presence of a gap. This gap can also be
understood in the following way. In the normal state the energy spectrum is twofold
degenerate. A state with a hole in the Fermi surface has the same energy as a state
with an electron above the Fermi surface. Cooper-pairing couples those states, which
leads to energy splitting and introduces a pairing gap,

|uk|2 =
1

2

[
1 +

εk − EF√
∆2

0 + (εk − EF)2

]
= 1− |vk|2 (10.61)

∆ = −
∑

k

ukvk .

The product ukvk only contributes near the Fermi surface. We get a density of states,

Ds(E) = Dn
|E − EF|√

−∆2
0 + (εk − EF)2

, (10.62)

which has a gap. The states are redistributed toward the edges of the gap.
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Figure 10.7: Pairing gap in the energy spectrum and the density of states.

10.4.3 Josephson junctions

Two superconductors that are joined by a nm thin isolating oxide layer build a Joseph-
son junction (JJ) [49]. Cooper pairs may tunnel through the junction producing a
current flow iJ. The basic JJ is described by,

iJ = Ic sinϕ and v =
Φ0

2π

dϕ

dt
, (10.63)
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where

Φ0 =
h

2e
. (10.64)

Ic is the critical supercurrent of the junction, and v is the voltage at the JJ. ϕ is
a dynamical variable describing the phase difference between the macroscopic wave
functions on both sides of the junction. Note that for small ϕ we have u ∝ i similar
to the situation in a magnetic coil. The ac-Josephson effect consists in applying
a constant voltage. Then ϕ increases linearly in time and the Josephson-current
oscillates at a given (microwave) frequency [36],

fJ =
v

Φ0
. (10.65)

This allows a very precise measurement of h/e.

10.4.4 Synchronization of coupled Josephson junctions

The superconducting flux is quantized. A superconducting quantum interference de-
vice consist of two JJs connected in parallel. In that way the supercurrent is split and
recombined.

10.4.4.1 Resistively shunted junctions

In a widely accepted model of nonideal resistively shunted junctions (RSJ) [76] the
junction current consists of three components: A superconducting current iJ =
Ic sinϕ, a resistive current iR = v/R, and a capacitance current v̇C (see Fig. 10.8).
From Kirchhoff’s laws using (10.63),

C
Φ0

2π

d2ϕ

dt2
+

1

R

Φ0

2π

dϕ

dt
+ Ic sinϕ = i , (10.66)

if the resistance is assumed independent of the applied voltage. Located in front of
the term ϕ̇ the resistivity is inversely proportional to the dissipation. The reason for
this is that dissipation occurs via single-particle tunneling. Note that the equation is
identical to that of an overdamped rotator or of a phase-locked loop.

Figure 10.8: Resistively shunted Josephson junction.

Neglecting the resistance, the equation of motion can be derived from the Hamil-
tonian,

Ĥ =
p2
ϕ

2CΦ0/2π
− iϕ− Ic cosϕ , (10.67)

via ϕ̇ = ∂H
∂pϕ

and ṗϕ = −∂H∂ϕ . The ϕ and pϕ are conjugate variables,

[ϕ, pϕ] = ı . (10.68)
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Let us go to scaled variables via H̃ ≡ H/(CΦ0/2π), p̃ϕ ≡ pϕ/(CΦ0/2π), K ≡
Ic/(CΦ0/2π), and λ ≡ i/(CΦ0/2π),

H̃ =
p̃2
ϕ

2
− λϕ−K cosϕ , (10.69)

In these units,

[ϕ, p̃ϕ] = ı
e

~C
. (10.70)

10.4.4.2 Response to ac driving sources

Let the applied voltage be v(t) = V0 + Vs cosωst. We may substitute the voltage in
(10.63) and integrate,

ϕ = ϕ(0) +
2π

Φ0
V0t+

2π

Φ0

Vs
ωs

sinωst . (10.71)

The resistive current is then,

iR =
V0

R
+
Vs
R

cosωst , (10.72)

and plugging (10.71) this into the Josephson current (10.63),

iJ = Ic sin

(
ϕ(0) +

2π

Φ0
V0t+

2πVs
Φ0ωs

sinωst

)
(10.73)

= Ic
∑

n

(−1)nJn

(
2πVs
Φ0ωs

)
sin [(fJ − nωs)t+ ϕ(0)] ,

where we expanded the double sine into Bessel-functions. The time-averaged Joseph-
son current disappears unless fJ = nωs,

īJ = Ic
∑

n

(−1)nJn

(
2πVs
Φ0ωs

)
sin [ϕ(0)] δ(fJ − nωs) . (10.74)

The averaged total current i = īR + īJ as a function of the applied voltage v thus
obtains a washboard-type characteristics,

i =
V0

R
+ Ic

∑

n

(−1)nJn

(
2πVs
Φ0ωs

)
sin [ϕ(0)] δ(v − nωsΦ0) . (10.75)

The plateaus in the i-v characteristics are called Shapiro steps. They appear at
voltages n~ωs/4πe. In the case of arrays of m JJs, steps are also observed at voltages
corresponding to rational fractions of frequencies mωj = nωs, provided the JJs are
locked [23].
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Figure 10.9: (code) Shapiro steps and their derivative.

10.4.4.3 Locking

To study the locking phenomenon we simplify the JJ equation by neglecting dissipa-
tion, C = 0,

Φ0

2π

dϕ

dt
= Ri+RIc sinϕ . (10.76)

This is the so-called Adler equation,

dψ

dt
= −ν + ε sinψ , (10.77)

whose formal solution is [76],

t =

∫
dψ

ε sinψ − ν . (10.78)

The beat frequency is,

Ωψ = 2π

∣∣∣∣∣∣

∫
dψ

ε
(

1− ψ2

2

)
− ν

∣∣∣∣∣∣

−1

, (10.79)

expanding around the maximum at ψ = π/2,

Ωψ ' πε
∣∣∣∣
∫

dψ

−ψ2 − 2νε + 2

∣∣∣∣
−1

= π
√

2ε
√
ε− ν

∣∣∣∣∣

∫
dψ̃

1− ψ̃2

∣∣∣∣∣

−1

' π
√

2ε
√
ν − ε .

(10.80)
This is due to a locking of the drive frequency and the frequency of the oscillators.

10.4.4.4 Devil’s staircase

Locking can also happen between higher harmonics. To see this we chose an alterna-
tive treatment goes as follows. The equation of motion with a pure ac driving voltage
without resistance is,

C
Φ0

2π

d2ϕ

dt2
+ Ic sin

(
ϕ(0) +

2πV0

Φ0
t+

2πVs
Φ0ωs

sinωst

)
= 0 . (10.81)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Appendix_JosephsonShapiroSteps.m
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Figure 10.10: (code) Arnold tongue.

It can be derived from the Hamiltonian,

Ĥ =
p2
ϕ

2CΦ0/2π
− Ic cos

(
ϕ(0) +

2πV0

Φ0
t+

2πVs
Φ0ωs

sinωst

)
. (10.82)

Substituting H̃ ≡ H/(CΦ0/2π), p̃ϕ ≡ pϕ/(CΦ0/2π), K ≡ Ic/(ωsCΦ0/2π), and λ ≡
ı/(ωsCΦ0/2π), ...

We now go to the annulus map describing the Josephson junction. The JJ map can
be interpreted as a δ-kicked rotor. The dissipative map [105] predicts the occurrences
of locking regions, known as Shapiro steps observed at all simple rational numbers
m/n. They are equivalent to those of a devil’s staircase.

10.4.4.5 Quantized JJ

The quantized energy levels of the JJ cosψ potential result in a phase quantization.
As a consequence, the energy exchange between an oscillating driving pump, ωs, and
the JJ, only occurs in multiples of ωJ.

To visualize quantum effects, one has to go to the quantum map |ψn+1〉 = Ûψn.

10.4.5 Exercises

10.4.5.1 Ex: Perfect conductor

Calculate the magnetic field near a perfect conductor by solving equation (10.49).

10.4.5.2 Ex: Perfect conductor

Quantify the Meissner effect for a thin layer by solving equation (10.50).

10.4.5.3 Ex: Meissner-Ochsenfeld effect

Calculate the magnetic field inside a thin superconducting layer as a function of layer
thickness and temperature.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Appendix_JosephsonLocking.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Appendix_PerfectConductor01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Appendix_PerfectConductor02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Appendix_PerfectConductor03.pdf
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10.5 Quantities and formulas in electromagnetism

10.5.1 Electromagnetic quantities

charge Q basic SI unit [C]

electric field (Coulomb law) ~E d~E(r) = 1
4πε0

dQ(r−r′)
|r−r′|3

Coulomb law ~E(r) = 1
4πε0

∫
V
ρ(r′)(r−r′)
|r−r′|3 d3r′

superposition principle F = F1 + F2

Coulomb force FC FC = q~E
electric dipole moment p p ≡ qr
electric torque ~τ τ = p× ~E
potential energy of electric dipoles Ue Ue = −p · ~E
electric flux Ψe Ψe ≡

∫
S
~E · dS

electric Gauß law
∮
S
~E · dS = Qdentro

ε0
= 1

ε0

∫
V ρ(r′)d3r′

gradient ∇ ∇ ≡∑k êk
∂
∂xk

potential V V ≡ −
∫
γ
~E · dr

voltage U U12 ≡ V2 − V1

capacity C C ≡ Q
U

plate capacitor C = ε0A
d

resistance (Ohm’s law) R R ≡ U
I

lei 1. de Kirchhoff
∑
k Uk = 0 in every mesh

lei 2. de Kirchhoff
∑
k Ik = 0 in every node

magnetic field (Biot-Savart law) ~B d ~B(r) = µ0

4π

∫
C
Id~̀×(r−r′)
|r−r′|3

Biot-Savart law ~B(r) = µ0

4π

∫
V

(r−r′)×j(r′)
|r−r′|3 d3r′

Lorentz force FL FL = qv × ~B
magnetic dipole moment ~µ ~µ ≡ IA
magnetic torque ~τ ~τ = ~µ× ~B
potential energy of magnetic dipoles Um Um = −~µ · ~B
magnetic flux Ψm Ψm ≡

∫
S
~B · dS

magnetic Gauß law
∮
S
~B · dS = 0

Ampère’s law
∮
C
~B · d~̀= µ0Identro = µ0

∫
S j(r

′)d2r′

Faraday law Uind = −dΦm
dt

inductance L L ≡ − Uind
dI/dt

self-inductance of a coil L = µ0
N2πr2

`

Poynting vector ~S S ≡ ~E × ~H
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electric displacement ~D ~D = ε~E
polarization ~P ~P = ~D − ε0

~E
magnetic excitation ~H ~H = µ−1 ~B

magnetization ~M ~M = µ−1
0
~B − ~H
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10.5.2 Formulas of special relativity

metric Kronecker symbol (δµν)

Lévi-Civita symbol (εµνωκ)

Minkowski metric (ηµν)

Lorentz transform (Λµν)

position (rµ) ≡
(
ct
r

)

displacement (∆rµ) ≡
(
c∆t
∆r

)

space-time interval ∆s2 ≡ ∆rµ∆rµ = c2∆t2 −∆r2

proper time ∆τ ≡
√

∆s2

c2 for ’time-like’ intervals ∆s2 > 0

proper distance |∆ ~S| ≡
√
−∆s2 for ’space-like’ intervals ∆s2 < 0

gradient (∂µ) ≡
(
c−1∂t
−∇

)

d’Alembertian � ≡ ∂µ∂µ = 1
c2

∂2

∂t2 −∇2

mechanics proper velocity (uµ) ≡ (∂r
µ

∂τ ) =
(
γuc
γuu

)

momentum (pµ) ≡ (∂u
µ

∂τ ) =
(
E/c
p

)

rest mass mc2 = pµp
µ = E2

c2 − p2

wave vector (kµ) ≡
(
ω/c
k

)

force (Kµ) ≡
(
γP/c
γF

)

e-dynamics current density (jµ) ≡ (%0U
µ) =

(
c%
j

)
with ∂µj

µ = 0

el.-mag. potential (Aµ) ≡
(
c−1φ
A

)
with Fµν = ∂µAν − ∂νAµ

Stokes theorem F
∫
Fµνds

µν =
∫
Aµdx

µ

el.-mag. flux (Sµ) ≡
(
cu
S

)

el.-mag. field tensor (Fµν) ≡


 0 − 1

c
~E

1
c
~E (−εmnkBk)




dual tensor (Fµν) ≡ 1
2ε
µναβFαβ =


0 − ~B
~B ( 1

c εmnkEk)




Lorentz force density fµ = Fµνjν

Lagrangian 1
2µ0

FµνF
µν = 1

µ0
B2 − ε0E2

FωκFωκ = 1
2εµνωκF

µνFωκ = − 4
c
~B · ~E

10.5.3 CGS units

Often used in electrodynamics are CGS units, also called Gaussian units. In this
script we will use exclusively SI units of the Système International d’Unités. To do
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the conversion between the unit systems, it is enough let,

e→ eCGS
√

4πε0 , j→ jCGS
√

4πε0 (10.83)

~E → ~ECGS
√

1
4πε0

, ~B → ~BCGS
√

µ0

4π

~D → ~DCGS
√

ε0
4π , ~H → ~HCGS

√
1

4πµ0

~P → ~PCGS
√

4πε0 , ~M→ ~MCGS

√
4π
µ0

.

Maxwell’s equations in the irrational Gaussian system are,

rot ~H = 1
c∂t

~D + 4π
c j , div ~D = 4π% . (10.84)

Moreover,

u = 1
8π (~E2 + ~B2) , S = c

4π (~E × ~B) . (10.85)

The material equations for dielectric media are,

~D = ε~E , ~P = χε~E , ε = 1 + 4πχε , (10.86)

and for dia- and paramagnetic media,

~B = µ ~H , ~M = χµ ~H , µ = 1 + 4πχµ . (10.87)

10.6 Rules of vector analysis

10.6.1 Basic rules

(i) A ·B = B ·A but A · ∇ 6= ∇ ·A , (10.88)

(ii) φB = Bφ but φ∇ 6= ∇φ ,
(iii) A×B = −B×A but A×∇ 6= −∇×A ,

(iv) A · (B×C) = B · (C×A) ,

(v) A× (B×C) = B(A ·C)−C(A ·B) ,

(vi) ∇f(φ(r)) =
∂f

∂φ
∇φ(r) chain rule ,

(vii) ∇(A ·B) = ∇(AB) +∇(AB) product rule for scalars and vectors .
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10.6.2 Deduced rules

(i) ∇(φ+ ψ) = ∇φ+∇ψ , (10.89)

(ii) ∇(φψ) = φ∇ψ + ψ∇φ ,
(iii) ∇ · (A + B) = ∇ ·A +∇ ·B ,

(iv) ∇× (A + B) = ∇×A +∇×B ,

(v) ∇ · (φA) = φ(∇ ·A) + (∇φ) ·A ,

(vi) ∇× (φA) = φ(∇×A) + (∇φ)×A ,

(vii) ∇ · (A×B) = (∇×A) ·B−A · (∇×B) ,

(viii) ∇×(A×B) = (B · ∇)A− (A · ∇)B + A(∇ ·B)−B(∇ ·A) ,

(ix) ∇(A ·B) = A× (∇×B) + B×(∇×A) + (A · ∇)B + (B · ∇)A ,

(x) ∇× (∇φ) = 0 = ∇ · (∇×A) ,

(xi) ∇× (∇×A) = ∇(∇ ·A)−4A ,

(xii) ∇ · (∇φ) = 4φ ,
(xiii) A · (∇φ) = (A · ∇)φ ,

(xiv) A× (∇φ) = (A×∇)φ ,

(xv) ∇φ =
dφ

dr
∇r chain rule ,

(xvi) ∇φ(ψ) =
dφ(ψ)

dψ
∇ψ ,

(xvii) ∇ ·A(ψ) =
dA(ψ)

dψ
· ∇ψ ,

(xviii) ∇×A(ψ) = −dA(ψ)

dψ
×∇ψ .
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10.6.3 Integral rules

(i)

∫

V
∇φdV =

∫

S
φdS, (10.90)

(ii)

∫

V
∇ · ~EdV =

∮

∂V
~E · dS Gauß’ rule ,

(iii)

∫

A

∇× ~E · dS =

∮

∂C
~E · dl Stokes’ rule ,

(iv)

∫

V
φ(∇ψ)dV =

∫

∂V
φψdS−

∫

V
(∇φ)ψdV Green’s rule ,

(v)

∫

V
[φ(4ψ)− (4φ)ψ] dV =

∫

∂V

[φ(∇ψ)− (∇φ)ψ] · dS

(vi)

∫

V
φ(4ψ)dV =

∫

V
(4φ)ψdV (10.91)

where 4 is hermitian, when lim
r→∞

rφ(r) = 0 = lim
r→∞

rψ(r) ,

(vii)
d

dt

∫ b(t)

a(t)

f(x, t)dx =

∫ b(t)

a(t)

∂f

∂τ
(x, t)dx+

db(t)

dt
f(b, t)dx− da(t)

dt
f(a, t)dx .

Notation,

∇φ · dS = ∇φ · n dS =
∂φ

∂n
dS . (10.92)
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10.7 Rules for Laplace and Fourier transforms

10.7.1 Laplace transform

Formulas for the Laplace transform:

(definition) (Lf)(p) =

∫ ∞

0

f(t)e−ptdt (10.93)

(inversion) L−1Lf = f where (L−1Lf)(t) =

∫ ε+ıω

ε−ıω
Lf(p)ept

dp

2πı

(linearity) L(af + bg) = aL(f) + bL(g)

(similarity) L[f(at)] = a−1Lf(a−1p)

(translation) LT f = Lf · e−pT where T f(t) = f(t− T )

L
(
feqt

)
= T Lf

(differentiation) L∂tf = pLf − f(0)

L(−tf) = ∂pLf
(pulse response) Lδ = 1 where δ(t) = L−11

(step response) Lδ′ = p−1

(integration) L
∫ t

0

dt f = p−1Lf

L(t−1f) =

∫ ∞

p

dp Lf

(convolution) L(f ? g) = Lf · Lg

(periodic functions) L(f = T f) =

∫ −T

0

dt
e−ptf(t)

1− epT
(eigenfunctions) f ? ept = Lf · ept .

10.7.2 Correlation

Formulas for the correlation:

(definition) (f � g)(t) =

∫ ∞

−∞
f(τ)g(t+ τ)dτ (10.94)

(non-commutativity) (f � g)(t) = (g � f)
s

(complex autocorrelation) |f � g∗| ≤ f � g∗(0) .
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10.7.3 Fourier transform

Formulas for the Fourier transform:

(definition) (Ff)(ω) =

∫ ∞

−∞
f(t)e−ıωtdt (10.95)

(inversion) F−1Ff = f where (F−1Ff)(t) =

∫ ∞

−∞
Ff(ω)eıωtdω

(linearity) F(af + bg) = aF(f) + bF(g)

(similarity) ?

(translation) FT f = Ff · e−ıωT where T f(t) = f(t− T )

F
(
feıωt

)
= T Ff

(differentiation) F [tf(t)] = ı∂ω(Ff)(ω)

F [f ′(t)] = ıω(Ff)(ω)

(pulse response) Fδ = 1 where δ(t) = F−11

(step response) Fδ′ =?

(duality) FF f = fs where fs(t) = f(−t)
F f∗ = (F f)∗s where fs(t) = f(−t)

(symmetry) f = fs = f∗ ⇔ F f = (F f)s

f = −fs = f∗ ⇔ F f = −(F f)∗

f = f∗ ⇔ F f = (F f)∗s

(convolution) F (f ? g) = Ff · Fg
F (f · g) = Ff ? Fg

(eigenfunctions) f ? eıωt = Ff · eıωt .

10.7.3.1 Fast Fourier transform

The discrete Fourier transform is defined by,

Hn =
N−1∑

k=0

e−2πınk/Nhk (10.96)

=

N−1∑

k=0

e−2πınk/(N/2)h2k + e−2πık/N

N/2−1∑

k=0

e−2πınk/(N/2)h2k+1

= even+ odd .

The inverse transform is,

hk =
1

N

N−1∑

k=0

e2πınk/NHn . (10.97)
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The sine transform of a real vector sk is,

Sn =
2

N

N−1∑

k=1

sk sinπnk/N . (10.98)

In MATLAB the fast Fourier transform is defined by:

F (k + 1) =

N−1∑

n=0

f(n+ 1)e−2πı/N ·kn . (10.99)

inversion:

f(n+ 1) =
1

N

N−1∑

k=0

F (k + 1)e2πı/N ·kn . (10.100)

symmetry,

f(n+ 1) = f∗(n+ 1) (10.101)

=⇒ K(k + 1) =

N−1∑

n=0

f∗(n+ 1)e−2πı/N ·kne−2πı/N ·Nn = F ∗(N − k + 1) .

and,

f(N − n) = f(n+ 1) = f∗(n+ 1) (10.102)

=⇒ F (k + 1) =

N−1∑

n=0

f∗(N − n)e−2πı/N ·kn

=

N−1∑

n=0

f∗(n′ + 1)e2πı/N ·kn′e−2πı/N ·(N−1) = F ∗(k + 1)e2πı/N .

and,

− f(N − n) = f(n+ 1) = f∗(n+ 1) (10.103)

=⇒ F (k + 1) =

N−1∑

n=0

−f∗(N − n)e−2πı/N ·kn

=

N−1∑

n=0

−f∗(n′ + 1)e2πı/N ·kn′e−2πı/N ·(N−1) = −F ∗(k + 1)e2πı/N .

Hence, we choose, Ff(n+ 1) = F (k + 1)e−πı/N .

10.7.3.2 Fourier expansion

The complex Fourier expansion is defined by,

fN (x) =

N∑

n=−N
cne

ınx where cn ≡
1

2π

∫

2π

f(x)e−ınxdx . (10.104)
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It can be verified easily that limN→∞ fN (x) = f(x) using,

∫

2π

eı(n
′−n)xdx = 2πδnn′ or

∞∑

n=−∞
eın(x−x′) = 2πδ(x− x′) . (10.105)

10.7.4 Convolution

Formulas for the convolution:

(definition) (f ? g)(t) =

∫ ∞

−∞
f(τ)g(t− τ)dτ (10.106)

(neutral element) f ? δ(n) = f (n)

(distributivity) (f + g) ? h = f ? h+ g ? h

af ? g = f ? ag

(commutativity) f ? g = g ? f

(associativity) (f ? g) ? h = f ? (g ? h)

(translational invariance) T (f ? g) = T f ? g = f ? T
(differentiation) ∂x(f ? g) = ∂xf ? g = f ? ∂xg

(integration)

∫

x

(f ? g) =

∫

x

f

∫

x

g

(complexity) f = fr + ıfi

(Dirac function) T f = f ? T δ
f(T ) = f · T δ .

Example 107 (Convolution of two Lorentzians): The convolution of two
Lorentzians,

La(x) ≡ a

π

1

x2 + a2
with

∫ ∞
−∞
La(x)dx = 1 ,

is simply another Lorentzian with the linewidth a+ b,

(La ? Lb)(x) = La+b(x) .

In order to demonstrate this, we first we apply the method of partial fractions
to the expression,

1

y2 + a2

1

(x− y)2 + b2
=

A

y2 + a2
+

B

(x− y)2 + b2

with A =
2xy + (x2 − a2 + b2)

(x2 + a2 + b2)2 − 4a2b2
, B =

−2x(y − x) + (x2 + a2 − b2)

(x2 + a2 + b2)2 − 4a2b2
.
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Now, we calculate the convolution,

(La ? Lb)(x) =
ab

π2

∫ ∞
−∞

1

y2 + a2

1

(x − y)2 + b2
dy

=
ab

π2

1

(x2 + a2 + b2)2 − 4a2b2

∫ ∞
−∞

2xy + (x2 − a2 + b2)

y2 + a2
dy +

∫ ∞
−∞

−2x(y − x) + (x2 + a2 − b2)

(x − y)2 + b2
dy


=
ab

π2

1

(x2 + a2 + b2)2 − 4a2b2

(
(x

2 − a2 + b
2
)

∫ ∞
−∞

1

y2 + a2
dy + (x

2
+ a

2 − b2)

∫ ∞
−∞

1

(x − y)2 + b2
dy

)

=
ab

π2

(x2 − a2 + b2)π
a

+ (x2 + a2 − b2)π
b

(x2 + a2 + b2)2 − 4a2b2
=
a + b

π

1

x2 + (a + b)2
= La+b(x) .

Example 108 (Convolution of two Gaussians): The convolution of two
Gaussians,

Ga(x) ≡
√

1

π

1

a
e−x

2/a2 with

∫ ∞
−∞
Ga(x)dx = 1 ,

is simply another Gaussian with the linewidth
√
a2 + b2,

(Ga ? Gb)(x) = G√
a2+b2

(x) .

We demonstrate this by calculating,

(Ga ? Gb)(x) =
1

πab

∫ ∞
−∞

e−y
2/a2e−(x−y)2/b2dy =

√
ab

π

∫ ∞
−∞

e−(a−2+b−2)y2+2b−2xy−b−2x2dy

=
1

πab
√

(a−2 + b−2)

∫ ∞
−∞

e
−ỹ2+ 2x

b2
√
a−2+b−2

ỹ−b−2x2

dỹ

=
1

π
√
a2 + b2

∫ ∞
−∞

e
−
(
ỹ− x√

b4/a2+b2

)2

− x2

a2+b2

dỹ

=
1

π
√
a2 + b2

e
− x2

a2+b2

∫ ∞
−∞

e−ỹ
2

dỹ =
1

√
π
√
a2 + b2

e
− x2

a2+b2 = G√
a2+b2

(x) .

10.7.5 Green’s functions

If a differential operator Lx acting on a variable x admits a Green’s function G such
that,

LxG(x, x′) = δ(x− x′) , (10.107)

The Green function can be used to solve any equation,

Lxf(x) = %(x) (10.108)

by calculating,

f(x) =

∫
G(x, x′)%)(x)dx . (10.109)
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10.7.5.1 List of Green functions

The following table provides a list of useful Green functions.

differential operator L Green function G
∂nt

tn−1

(n−1)!Θ(t)

∂t + γ Θ(t)e−γt

4 − 1
4πr

∇· − r−r′
4πR3

∇× − (r−r′)×(r−r′)
4πR3

� − 1
4πr δ(t∓ 1

c r)

4+ k2 − eıkr4πr

−∇×∇×+k2 see Sec. 7.3.1

Example 109 (Green function for time derivation): To solve the differen-
tial equation,

(∂t + γ)f(t) = c ,

we search the Green function for the equation,

(∂t + γ)G(t, t′) = δ(t− t′) .

From the above table, we get,

f(t) =

∫ ∞
−∞
G(t, t′) c dt′ = c

∫ ∞
−∞

Θ(t− t′)e−γ(t−t′)dt′ =
c

γ
e−γt .
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